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Abstract

The international trade in commodities forms a complex network of economic interdependen-
cies. This network now plays a central role in promoting global economic development and
security. However, significant asymmetries have been noted in terms of access to this network,
and in the unequal distribution of the benefits and risks accrued from the system as a whole.
Understanding the statistical properties and dynamics of the trade network have therefore,
become important tools for investigating a multitude of real-world policy concerns relevant to
economics, public policy, and international development. This thesis focuses on investigating
three of these issues—market growth, price inequality, and supply risks. The first of these
projects focuses on modelling the growth of commodity markets, and the resulting effect on
network topology. The second, looks at how asymmetries in network can lead to varying prices
for the same good, and explores the implications for developing more equitable market struc-
tures. The final project contributes to our understanding of how export restrictions affect the
network structure of trade and how these risks can undermine global food security. Throughout,
a network science approach is employed, whereby trade is modelled as a graph-like structure,
with the topology of trade being the primary focus of analysis. To support this approach, we
introduce several theoretical models, and apply simulations on both real-world, and artificially
produced trade network data. The outcome of this research improves on our ability to identify
and target key participants within a market, and predict policies that favour more stable and
equitable structures that better facilitate trade.
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Chapter 1

Introduction

The past thirty years has been an unprecedented era of globalisation, with many developing
economies rapidly integrating into a global trading system [139]. This system has formed
together to create a complex network of economic interdependencies. In this context, markets
facilitating the exchange of physical goods and commodities, have become a major source of
income for many in the developing world, with a country’s success in this arena, now a major
predictor of overall economic performance [126]. However, significant asymmetries have been
noted between countries that rely on this system, both in terms of access to the network, and
in the unequal distribution of benefits accrued from the system as a whole [126]. As one of
the most important interaction channels between countries, trade can also act as a conduit for
spreading risks [122]. In highly interconnected markets, even small economic perturbations can
reach across great distances and become truly global crises [44]. Disruptions in the energy and
agriculture sectors in particular, can have non-trivial implications in terms of food availability
and energy security—for both governments and businesses alike.

Given the central role played by the international trading network in promoting global
economic development and security, the study of its statistical properties and dynamics, have
become an issue of growing interest in the research community. Understanding the movement
of goods across the network, and the interconnections that this activity creates, is also becoming
integral in forming coherent international trade policy [81, 139]. Despite its recent emergence,
the network approach to trade has produced many theoretical models and experimental tools
necessary to quantify and measure market behaviour. However, far less progress has been made
in connecting these statistical properties to real-world outcomes, which motivates the central
aim of this thesis. In quantifying commodity markets in terms of a network topology, we can
develop tools for investigating real-world policy concerns relevant to readers in economics,
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public policy, and international development.

While these concerns are too broad to be fully covered by any one thesis, we begin by
addressing just three specific issues—market growth, price inequality, and supply risks—in a
series of empirically based projects that are detailed below. Each project focuses on measuring
and understanding one of these concepts in a network setting, but grounded in a theory of
economic behaviour and interaction. Throughout the thesis, a network science approach is
employed, whereby trade is modelled as a graph structure, with the topology of trade being the
primary focus of analysis. To support this approach, we introduce several theoretical models,
and apply simulations on both real-world, and artificially produced trade network data. This
approach is important for two reasons. First, it will help the policy community understand
how the structure of trade networks affects the behaviour and dynamics of commodity trading.
Second, if we can predict policies that favour more stable and equitable structures that better
facilitate trade, we can, in turn, aid in the restructuring of future trade networks. More broadly,
this thesis also contributes to the exploration of the intersection between theories of trade and
the literature on graph theory.

Before outlining the remainder of the thesis, we give some preliminaries on commodities
trading, including a basic history and notable developments, along with a summery of how
commodities are important to international trading as a whole. We also briefly outline the
network science approach to modelling trade data that is used throughout the thesis, and discuss
how and where it differs from standard economic methods.

1.1 Commodity Markets

A ‘commodity’ is defined as a good that is supplied without qualitative differentiation. That
is to say, a specific commodity purchased from the U.S., should theoretically, be of the same
quality, colour, flavour, as a commodity purchased from China. This characteristic of sub-

stitutability, greatly facilitates trade, as any importer can trade with any exporter and vice

versa, knowing they are purchasing essentially the same good [128]. Commodities largely
consist of ‘raw’ materials that have not been processed into other products. Consequently,
many commodities are the inputs for a wide array of manufacturing processes. Commodities of
this type—solid and liquid fuels, or industrial and precious metals for example—are referred to
as ‘hard’ commodities. Soft commodities, on the other hand, are farm products such as, grains,
food-stuffs, and plant fibres. A smaller grouping of these soft commodities, that are specific
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to the tropics, such as sugar, cocoa, and coffee beans, are also referred to as ‘softs’. Table 1.1
details the major commodity types and list the primary exchanges on which these commodities
are sold [27]. Note that the commodity exchanges listed only refer to where the contracts are
traded—the physical goods are shipped directly from the originating country to the purchasing
country.

Type Commodity Symbol Exchange Abbreviation

Energy Crude Oil CL New York Mercantile Exchange NYMEX
Brent Crude B International Petroleum Exchange IPE
Ethanol AC Tokyo Commodity Exchange TOCOM
Natural Gas NG Central Japan Commodity Exchange CJCE

Metals Copper HG New York Mercantile Exchange COMEX
Lead LME London Metal Exchange LME
Aluminium LMAHDS Shanghai Futures Exchange SFE
Gold GC Philadelphia Board of Trade PHLX
Platinum XPTUSD Tokyo Commodity Exchange TOCOM

Fibres Wool ASX Chicago Mercantile Exchange CME
Cotton CT New York Cotton Exchange NYCE

Grains Maize C Chicago Board of Trade CBT
Rice ZR Dalian Commodity Exchange DCE
Soybeans S Kansas City Board of Trade KCBT
Wheat EBL Minneapolis Grain Exchange MGE

Softs Sugar SB Coffee, Sugar and Cocoa Exchange CSCE
Cocoa CC New York Board of Trade NYBOT
Coffee KC EURONEXT, UK EURONEXT

Table 1.1 Globally traded commodities by type and by exchange typically listed.

The commodities listed in Table 1.1 account for approximately 23% of all world trade
(measured in US$ worth of trade), with the remainder being trade in intermediate or manu-
factured products [91]. Commodities typically have little or no value added, are sold in bulk,
and are traded by many countries, both in imports and exports, leading to highly competitive
markets [91]. These features, along with relatively stable demand for what are every day
essentials, lend themselves to a very low unit price. An important caveat being that while
demand is relatively stable, both the short- and long-term supply of many commodities is often
not. This leaves many markets with a high degree of price volatility (albeit starting from a
low price point). The issue here, is that the time required to make changes in production is
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generally quite long, especially compared to manufacturing, in which output (i.e., supply)
can be changed ‘just-in-time’ in some cases. For example, increasing the extraction of raw
minerals can take years, or even decades if new mines have to be planned and built [91]. Even
then, price volatility makes investment decisions about new production capabilities difficult,
and often introduces price risks further down the supply chain. In the soft commodities, even
small variation in annual yields can lead to price volatility, due to the extremely low (or zero)
price ‘elasticity’ (i.e., the ability or willingness of buyers to accept higher prices) of many
staple crops. In recent years, these risks have been further exacerbated by the renewed use of
restrictive export policies in several important grain markets. The implications of these actions
is discussed and analysed further in Chapter VI of the thesis.

Historically, the origins of modern commodity exchanges can be traced back to 17th century
Holland, where agricultural products began to be bought and sold on formal contract. Commod-
ity exchanges only became a major factor in international trade after the industrial revolution.
The United Kingdom, in particular, became a major importer of industrial metals. The rapid
increase in traded goods was organised formally as the London Metal Exchange (LME) in 1877.
Energy commodity markets are a far more recent development, with the introduction of gas oil
futures contracts on the International Petroleum Exchange (IPE) coming as recently as 1981.
Soon after sweet crude oil contracts were listed on the New York Mercantile Exchange in 1983,
and Brent crude futures in 1988 [91]. China’s recent expansion into international trade has
also greatly influenced the development of commodity trading. In 1994, the Chinese Securities
Regulatory Committee consolidated all local exchanges into just three internationally focused
exchanges; The Shanghai Futures Exchange (SFE), The Zhengzhou Commodity Exchange
(ZCE), and The Dalian Commodity Exchange (DCE). After China’s trade liberalisation efforts,
commodity exchanges have proliferated across Asia, as more countries followed suit and
begun to deregulate their economies. Despite this expansion, there remains a high degree of
concentration, in terms of the value of trade exchanged on each market, with the majority
focused in just the US, Japan, China, and the UK [27].

International trade policy on commodities is driven primarily by the World Trade Organisa-
tion (WTO), which sets rules (of which only some are legally binding) on the kinds of trade
restrictions countries can put in place. The WTO was formally established in 1995, but its
predecessor organisation, General Agreement on Tariffs and Trade (GATT) has been operating
since 1948. The primary aim of the WTO is to dismantle barriers to trade, and has been a major
influence in the globalisation of trade [131]. However, the WTO faces difficulties in balancing
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international trade policy between the developing and developed worlds. On the one hand, low
commodity prices are typically favoured by developed industrial nations, as they are generally
net importers (with notable exceptions including Australia and Canada). However, many net
exporters are among the least developed nations in the world, and rely on selling commodities
for the majority of their income. Naturally, they favour higher prices, that will increase export
earnings and stimulate economic growth. Direct market interventions such as production
limits, export quotas, and buffer stocks can affect prices one way or the other. However most
policies of this nature have now been removed, largely due to the influence of the WTO’s trade
liberalisation efforts [91]. While nominally, countries cannot discriminate between trading
partners under the WTO rules, many exceptions persist. For example, the Europeans Union’s
common market arrangement discriminates against goods imported from outside the EU. On
the whole, however, far more discriminatory policies have been adopted by those countries
that are still in the process of industrial development [131]. This differentiation is codified to
some extent in the WTO rules under the principle of ‘special and differential treatment’, which
has given developing countries the ability to impose tariffs on up to two-thirds of imports, and
excluded them from the rules regarding non-tariff barriers (i.e., quantitative trade restrictions).
However, it is thought that allowing developing nations to ‘opt-out’ of the WTO rules is only
harming their economic prospects by creating an unfavourable investment climate that could
discourage future trade and investments [131].

1.2 Modelling Trade as a Network

We now turn to discussing the network science approach to modelling commodity trade data.
While economists have a long history of research on mathematical models of trade and markets,
it has been rare for the network structure to be explicitly considered [121]. However, new
approaches have recently emerged from outside the field. Influenced by developments in
physics and computer science, researchers have begun applying graph-theoretic approach to
modelling trade data [122, 43]. This approach, often referred to as network science1, has
attracted considerable attention due to the supposed universal properties of networks, with
applications found across a wide range of disciplines [13]. The proponents of the network
science approach argue that these new modelling techniques can reveal properties of trade
which cannot be fully explained by standard economic modelling, as well as account for
previously unexplained empirical observations [36, 122]. However, many of the more abstract
network concepts, do not, as yet, have direct economic interpretations [85]. For this reason,
1 Network science is also known as ‘social network theory’.
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difficulties remain in assessing the relevance of many network properties and in connecting
them to real-world outcomes [121].

At the most basic level, a network model of international trade consists of a number of
vertices, each representing a particular country, and edges drawn between these vertices, repre-
senting bilateral trade in the form of imports and exports of a given commodity. A country’s
degree can then be defined as the number of edges to or from that country, with imports as
the in-degree and exports as the out-degree [122]. Many countries trading with each other,
in often divergent and asymmetric patterns, form together to give the network its structure.
Where network science differs most from traditional economic modelling, is that it primarily
focuses on measuring the topology of a given network and developing generative models
that can reproduce networks of a similar structure. Due to the size and complexity of the
international trade data, many economic models rely on aggregating many trade relationships
into single variables [52]. However, using the network approach, researchers have been able to
extract hitherto unknown statistical properties from these data [122]. More importantly, through
network modelling, we can also consider relationships that go beyond the scope of standard
international-trade indicators, which only account for direct bilateral-transactions. For example,
second-order topological properties can be measured, such as, the level of indirect competi-
tion between exporters, and the formation of distinct communities within the network [44].
It is also thought that the global structure of the international trading system can indirectly
influence the trading behaviour of individual countries, leading to another area of analysis [123].

Beyond descriptive statistics, researchers have also developed a wide array of generative
models that may be useful in exploring the evolution and growth of the international trading
system. The generative models have many characteristics in common. They typically begin
with a small seed network, often of just a few countries (vertices) connected together at random.
This is used to get the algorithm started. They then proceed to build the network sequentially,
adding one country at a time. Every time a pair of countries makes a trade, an edge is introduced
between their respective vertices. As the network grows, more and more vertices and edges are
introduced, growing the size and density of the network accordingly. Usually new edges are
added via a stochastic dynamic [132], with the ‘preferential attachment’ model in particular,
being considered of importance to international trade [16, 122]. In this case, a new country
entering the market is likely to trade with an existing country with a probability proportional
to that existing country’s degree [29]. This process is often thought to mimic how highly
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connected countries at the core of the network acquire trade relations at a faster rate than those
nations on the periphery [29].

1.3 Thesis Structure

The remainder of this thesis is structured as follows;

CHAPTER II

An Introduction to Networks: The next chapter reviews some basic graph theory notation
and concepts that are used throughout the thesis. Graph notation for directed, weighted, and
bipartite networks are provided, and a comprehensive list of network measures commonly in
use in the literature are explained.

CHAPTER III

Review of the Trade Network Literature: The third chapter provides a comprehensive
review of the models and experiments developed thus far in the trade network literature, and
gives an overview of the results and conclusions drawn from these works.

CHAPTER IV

Growth in Network Models of Commodity-Trade: A ubiquitous feature of the trade
network literature are reports of extremely high levels of heterogeneity in the degree distribution
of the networks under study. These results are often taken to imply a so-called ‘preferential
attachment’ model of network growth. Recently however, serious critiques have been levelled
at the methods used in these studies, and consequently, we need to re-evaluate many of the
conclusions drawn. In this chapter, these critiques are outlined and the correct methods
for measuring the degree distributions of empirical networks are identified. An alternative
methodology is employed, that directly measures the growth in network connectivity. This
shows that growth in many trade networks is constrained, resulting in a far different topology
than the preferential model would imply. A new single parameter model is developed that
reproduces these features across a wide array of commodity markets. This model has wide
reaching implications, both in terms of estimating future market growth and the robustness of
critical markets.
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CHAPTER V

Price Variation in Network Models of Commodity-Trade: Whilst the international trade
in commodities is a major source of income for many developing countries, restrictions on trade
introduce asymmetries in the economic interactions between consumers. These asymmetries
can lead to varying prices for the same goods simply due to the network structure. While having
to pay higher prices is detrimental for low-income consumers, low prices can prove challenging
for producers as well. In this Chapter, a network model is applied to commodity markets
to measure the effect of a network structure on both local and global price asymmetries. A
simple economic model is used, whereby standard price formation factors are specified so that
variation in prices can be ascribed solely to the network structure. Using the model, the local
network determinants of price variation are investigated, along with how global prices vary
between networks with different topological properties. These findings combine theoretical
analysis, modelling, and applications to real-world trade data. The results are interpreted in
terms of both economic theory and international trade policy.

CHAPTER VI

The Risk of Export Restrictions to Food-Commodities: Research has shown that export
restrictions play a key role in exacerbating the risks faced by food-import dependant countries.
These risks are evidenced by the recent episode of extreme food-price volatility, commonly
referred to as “the global food crisis”. From a network perspective, a country’s susceptibility
to these risks can be directly related to its level of integration into the world trade system’s
structure. In this chapter, a network theory approach is used to analyse the effect of export
restrictions on three major food-commodity markets. This method allows for the extraction
of relevant structural information about the effect of export restrictions on the network as a
whole, whilst also identifying the relative risks to specific countries. A composite risk index is
developed that assesses the risk posed by export restrictions to food-importing countries based
on their position in the network. These risks are interpreted in terms of developing a policy of
strategic reserves. A case study example is also provided, showing how these network metrics
can be applied to improve food-security policies.

CHAPTER VII

Conclusion and Outlook: The concluding chapter provides an overview of all results from
the three projects, and offers some discussion on the policy implications with regard to negoti-
ating global trade agreements. This chapter also details the limitations of the methodologies
employed, and outlines areas for further development.
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Chapter 2

An Introduction to Networks

2.1 Notation

In this chapter, we review some basic graph theory. The definitions in this chapter are taken
from Barabási [13], unless otherwise stated. The following notation is used throughout the
thesis:

• A = Adjacency matrix of a graph

• ai j = Indicator of an edge between vertices i and j

• Cl(i) = Local clustering coefficient of vertex i

• Clg = Global clustering coefficient

• CS(i) = Strength centrality of vertex i

• CC(i) = Closeness centrality of vertex i

• CB(i) = Betweenness centrality of vertex i

• C4b(i) = Bipartite clustering coefficient of vertex i

• Cw
4b(i) = Weighted bipartite clustering coefficient of vertex i

• di j = Shortest path (geodesic distance) between vertices i and j

• 〈d〉 = Average path length across a graph

• dmax = Diameter of a graph
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• δ = Edge density

• G(V,E) = A graph comprised of a set of |V | vertices and a set of |E| edges

• ki = Degree of vertex i

• 〈k〉 = Average vertex degree

• knn = Nearest neighbours average degree

• |E| = Total number of edges in a graph

• |V | = Total number of vertices in a graph

• N(d)
i j = Number of paths of length d, between vertices i and j

• P(k) = Degree distribution

• snn = Nearest neighbours average strength

• W = Weighted matrix of a graph

• wi j = Weight of the edge between vertices i and j

2.2 Network Basics

A graph (or network1) is a way of representing pairwise interactions among a set discrete
entities [13]. Each graph G(V,E) consists of a set V of N vertices (e.g. people, web pages,
routers etc...) and the E edges (links) between those vertices (e.g. friendships, hyperlinks,
cables). A pair of vertices are considered adjacent in the network if they are connected by an
edge.

For mathematical purposes a graph is often represented through its adjacency matrix A.
Each element ai j of this n×n matrix denotes whether an edge connects vertices i and j together,
where

ai j =

1, if i and j are adjacent

0, otherwise.
(2.1)

The adjacency matrix of an undirected network is always symmetric i.e. ai j = a ji ∀i, j. As
such, we record two entries for each edge. For example, in Figure 2.1 the edge between vertices
A and B is represented by both the elements, aAB = 1 and aBA = 1 in the adjacency matrix.
1 Although often used as synonyms, a network typically refers to a real-world system, whereas a graph is the
mathematical representation of a network [13].
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B

Avertex

D

C

edge

A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0



Fig. 2.1 (Left) a undirected graph consisting of a set of 4 vertices {A,B,C,D} and a set of 5
edges {(A,B),(B,C),(B,D),(C,D),(D,A)}. Vertex A is adjacent with vertices B and D, but not
with vertex C. (Right) the corresponding adjacency matrix A.

2.2.1 Vertex Degree

We often need to count the number of edges connected to a particular vertex, which we call the
vertex’s degree, k [56]. The degree ki of vertex i can be directly obtained from the adjacency
matrix. For an undirected network, each vertex’s degree can be calculated by summing over
either the rows or the columns of a network’s adjacency matrix as follows

ki =
N

∑
i=1

ai j =
N

∑
j=1

ai j, (2.2)

where N is the total number of vertices in the graph i.e., the size of the network. A vertex
degree give some indication as to its relative importance or ‘centrality’. So for example, if most
vertices in a graph have the same degree, we can say that each vertex plays an equal part in
the network. Sometimes however, a few vertices have many more edges compared to others.
These high-degree vertices are often referred to as ‘hubs’ [13], and are considered to play a
more important or central role in the network. Degree centrality is particularly important in
graphical models that predict the diffusion of information and the spread of infections [89].

The total number of edges in a graph |E|, can be expressed as the sum of the vertex degrees

|E|= 1
2

N

∑
i=1

ki, (2.3)

where the 1/2 factor corrects for the fact that the summation in (2.3) counts each edge twice.
The maximum number of edges a graph of V vertices, is given by

Emax =
N(N −1)

2
. (2.4)
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A complete graph KN , is one in which all possible edges exist. From these values we can also
calculate a graph’s mean degree 〈k〉, i.e., the average degree of all vertices in the network, as
follows,

〈k〉 ≡ 1
N

N

∑
i=1

ki =
2|E|

N
, (2.5)

where |E| is the total number of edges.

The edge density δ of a graph is defined by the number of edges |E| divided by the maximum
number of possible edges Emax. For example, the graph in Figure 2.1 for example, has 5 edges
out of a possible 12, hence the density is δ = 5/12 = 0.42. The density can also be derived by
dividing the mean degree by the maximum number of possible edges

δ =
〈k〉

N −1
. (2.6)

2.2.2 Directed Graphs

In a directed graph, edges point from one vertex to another, and the adjacency matrix is not
necessarily symmetric. That is to say. if an edge is joining vertices i to j, then there need not
necessarily also be an edge from j to i, however, if vertices i and j are connected both to and
from one another, two edges (i, j) and ( j, i), are added to the adjacency matrix. An example of
a directed graph and its associated adjacency matrix A, is given in Figure 2.2.

2

1 3

4

a12 a23

a34a41

a24 A =


0 a12 0 0
0 0 a23 a24
0 0 0 a34

a41 0 0 0



Fig. 2.2 (Left) a directed graph consisting. The direction of travel is shown by an arrow on each
edge. (Right) the corresponding adjacency matrix A, where the element a12 = 1 indicates that
there exist an edge from vertex 1 to vertex 2.

In a directed graph we need to distinguish between the in-degree kin
i , representing the

number of edges that point to vertex i, and out-degree kout
i , representing the number of edges

that point from the vertex i to other vertices in the network. The (total) degree is the sum of
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both in- and out-degrees
ki = kin

i + kout
i . (2.7)

The total number of edges in a directed network is given by

|E|=
N

∑
i=1

kin
i =

N

∑
i=1

kout
i . (2.8)

The mean degree of a directed network is simply

〈k〉= |E|
N

. (2.9)

In a directed graph we also need to distinguish between the in- and out-neighbourhood
of a vertex [25]. The in-neighbourhood of vertex v, denoted as V in(v) is the set of vertices
that connect to v. That is, V in(v) = {u : (u,v) ∈ E}. The out-neighbourhood of v, denoted as
V out(v) is the set of vertices that are connected from v. That is, V out(v) = {u : (v,u) ∈ E}. So
for example in figure 2.2, the in-neighbourhood of vertex 2 consist only of vertex 1, whereas
the out-neighbourhood contains both vertex 3 and 4.

2.2.3 Weighted Graphs

In a weighted graphs, each edge has an associated numerical value, referred to as the edge
weight. Edge weights can be interpreted in many ways, such as a measure of the distance
between two vertices [25]. The edge weights are recorded in a weighted matrix W, whose
elements wi, j, denote the weight for edges (i, j) (see Figure 5.3). In most contexts, edge weights
are either a non-negative real number or natural number.

2

1 3

4

0.5 0.3

0.40.7

0.6 W =


0 0.5 0 0
0 0 0.3 0.6
0 0 0 0.4

0.7 0 0 0



Fig. 2.3 (Left) a weighted-directed graph. The weight of each interaction is shown by the value
adjacent to each edge. (Right) the corresponding weighted matrix W, where the element wi j
indicates the weight associated with the edge from i to j.
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2.3 Traversing Graphs

While traversing graphs is not as prominent in trade network analysis as in other network
science applications, concepts such as the ‘shortest path’ serve as the basis for a number of
important measures of network structure [25]. The concept of traversing graphs begins with
noting that non-adjacent vertices may be reachable from one to the other by visiting a series of
adjacent vertices.

A path between two vertices must follow a sequence of adjacent vertices i → j → ··· → k

such that each consecutive pair i → j is connected by an edge. In addition, no vertex can
be visited more than once, and no edge can be repeated. The length of a path is measured
by the number of edges that must be traversed to reach j from i. The shortest path between
two vertices is known as the geodesic path, the length of which is referred to as the geodesic
distance d. In an undirected network, the distance from i to j is always the same as the reverse
path, such that di j = d ji. However, in a directed network this is not always the case, such that
di j 6= d ji for some pairs of vertices.

1

2

3

4

5

Fig. 2.4 A directed graph. The highlighted path 1 → 2 → 3 → 4 → 5, is the geodesic distance
between vertices 1 and 5.

The number of shortest paths, Ni j, between a pair of vertices can be determined directly
from a graph’s adjacency matrix A. If there is a direct path between them (i.e., di j = 1), then
ai j = 1 (ai j = 0 otherwise). For paths of length d, aik . . .al j = 1 (aik . . .al j = 0 otherwise). The
number of paths of length d is given by

N(d)
i j =

[
Ad

]
i j
. (2.10)
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where
[
. . .

]
i j

denotes the (i j)th element of A. Equation (2.10) holds for both directed and

undirected networks [13]. The distance between vertices i and j is the path with the smallest d

for which N(d)
i j > 0.

2.3.1 Diameter

Where a graph is fully connected, i.e., all vertices can be reached from one another along a set
of paths, its diameter can be measured as the longest-shortest path over all pairs of vertices
(ni,n j). For example, the graph in Figure 2.4 has a diameter of dmax = 4. The average path

length 〈d〉, is simply the average distance between all pairs of vertices in a graph. For a directed
network of N vertices, 〈d〉 is given by

〈d〉= 1
N · (N −1)

N

∑
i 6= j

d(ni,n j). (2.11)

For an undirected network, we need to multiply the right side of equation (2.11) by two.

2.3.2 Components

In many real-world networks, not every pair of vertices are necessarily connected by a path. If
any two vertices are unreachable, a graph is said to be disconnected, and the distance is said to
be either infinite or undefined. A disconnected graph is comprised of two or more components.
Each component is defined as a subgraph, where each vertex has a path to all others (i.e., they
are mutually reachable). The size of a component is simply the number of vertices it contains,
with the one containing the most vertices referred to as the largest component [105]. In this
case the network diameter is measured as the diameter of its largest component.

2.4 Network Measures

2.4.1 Degree Distribution

Recall that a vertex’s degree is the number of edges connected to that vertex. We often want to
know how many vertices in a graph have a similar degree. Making a histogram of all vertex
degrees gives the degree distribution, which can also be defined as the fraction of vertices N,
that have degree k [107]. If there are N vertices in a graph, and Nk have a degree k, the degree



www.manaraa.com

2.4 Network Measures 16

1

2

3

4

5

6

7

Component 1 Component 2

Disconnected Graph

Fig. 2.5 A disconnected graph comprised of two components. The size of Component 1 is
N = 4 whereas in Component 2, N = 3, thus the former is the largest component of the graph.

distribution is given by

P(k) =
Nk

N
. (2.12)

The degree distribution can also be thought of as the probability that a vertex chosen at random
has degree k. The degree distribution has taken a central role in network theory as the precise
functional form of P(k) is thought to influence the behaviour of many network phenomena [14],
including the relative robustness of the network to attack [5]. Another reason for its importance
is that the calculation of many network properties requires us to know P(k). For example, the
average degree of a network can also be written as

〈k〉=
∞

∑
k=0

kP(k). (2.13)

2.4.2 Degree-Degree Correlations

The in- and out-degrees of connected vertices may be correlated [106]. This relationship can
be measured by the degree-degree correlation coefficient, which denotes the probability that a
vertex of degree ki is connected to a vertex of degree k j, given by

r =
〈kik j〉−〈k〉2

〈k2〉−〈k〉2 , (2.14)

where averages are taken over all pairs of neighbours, i and j. This quantity takes values in the
range −1 ≤ r ≤ 1, depending on the strength and direction of the relationship.
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2.4.3 Nearest Neighbours Average Degree

Another way of representing a degree-degree correlation in a graph is the nearest neighbours

average degree given by
knn = ∑

k′
k′Pc(k′|k), (2.15)

which measures the probability that an edge of a k degree vertex points to a vertex with degree
k′.

2.4.4 Clustering

The clustering coefficient (also referred to as transitivity) is related to the number of triangles
in the network (see Figure 2.6). The local clustering coefficient of vertex i can be expressed as

Cl(i) =
the number of closed triples (triangles) connected to vertex i

the number of triples centred on vertex i
, (2.16)

where a ‘triple’ refers a single vertex with edges running to two other vertices. Alternatively,
local clustering can be interpreted as a measure of a graph’s local density, i.e., the more densely
interconnected the neighbourhood of a vertex, the higher its clustering [13]. More formally, the
local clustering coefficient for a undirected graph is given by

Cl(i) =
2Ei

ki(ki −1)
, (2.17)

and for a directed graph

Cld(i) =
Ei

ki(ki −1)
, (2.18)

where Ei is the number of edges between the ki neighbours of vertex i. The local clustering
coefficient is in the range 0 ≤Cl(i)≤ 1 where, Cl(i) = 0 means that there are no edges between
i′s neighbours and Cl(i) = 1 implies that every neighbour is connected to each other [13]. For
vertices with degree 0 or 1, we set Cl(i) = 0.

By measuring the local clustering as a function of degree Cl(k), we can reveal the presence
of hierarchy across the graph [122]. For instance, if values of Cl rise with higher values of k

we would see high degree vertices connected to tightly interacting neighbours and low degree
vertices connected to only loosely interacting neighbours.
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1

3
2

4

5

Fig. 2.6 An example graph with one triangle and eight connected triples. Each of the vertices
have local clustering coefficients equal to Cl(1) = 1, Cl(2) = 1, Cl(3) = 1/6, Cl(4) = 0, and
Cl(5) = 0. From equation (2.19), the global clustering coefficient Clg = 0.43̇.

The global clustering coefficient is simply the average of all local clustering coefficients
across the graph

Clg =
1
N ∑

i
Cl(i). (2.19)

This measure can also be considered the probability that two neighbours of a randomly selected
vertex are themselves connected to each other [13, 35]. In random-graph models the global
clustering coefficient is generally low and falls to 0 as the graph size increases. However, in
many real-world networks the clustering coefficient has been found to be much higher and
remains so, even in larger networks [35].

2.4.5 Centrality

Some vertices are considered to be important due to their topological position in a graph [35].
We call this measure the vertex’s centrality. However, there are several different measures
of centrality that capture different aspects of a vertex’s importance. The context of the graph
needs to be taken into account in order to make the right choice of centrality measure [89].

Strength Centrality

The strength centrality (often referred to as just vertex strength) is measured by the total weight
of a vertex’s edges. For vertex i, strength centrality is given by

CS(i) =
N

∑
j=1

ai jwi j, (2.20)
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where wi j is the weight of the edge between vertex i and j. The context in which this measure
is applied is particularly important for interpreting the individual edge weights and vertex
strength. For example, in an airport network, each edge weight would record the number of
flights between two airports and the vertex strength would measure the total air traffic handled
by each airport [17].

We might consider whether there is a correlation between a vertex’s strength and its degree.
If they are correlated, the relationship between the two can be approximated by

CS(k)∼ kβ , (2.21)

where the parameter β gives the shape of the correlation [63]. One possibility is that β < 1,
which would show that those vertices with higher degrees have many edges, but with low
weights. In such as graph, the importance of high degree vertices might be less than we might
have otherwise expected. Edge weights could also be randomly distributed, such that β ≈ 1.
However, in the case where β > 1, a vertex’s degree would highly underestimate its importance
in the graph [63].

Average nearest-neighbour strength snn measures how intense are edge weights between the
nearest-neighbours of a given vertex. Average nearest-neighbour strength of vertex i is given by

snn(i) =
1

N(i)∑
j

CS( j). (2.22)

We can also measure a correlation between the average nearest-neighbour strength and vertex
strength centrality, which gives a measure of network strength assortativity (if positive) or
disassortativity (if negative) [44].

Closeness Centrality

The closeness centrality measures how many steps it takes, from a particular vertex, to reach
any other vertex in the graph [56]. For vertex i the closeness centrality CC(i) is given by

CC(i) = ∑
j 6=i

1
di j

, (2.23)

where di j the distance between vertex i and j. We take the inverse of the distance in (2.23), so
that larger values of CC(i) indicate more centrality, in line with other centrality measures. As
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such, a vertex with a high closeness centrality can ‘communicate’ or travel (depending on the
context) very quickly with other vertices in the graph [89].

Betweenness Centrality

Betweenness centrality measures how often a given vertex is on a path between two other
vertices [57]. The betweenness of vertex i, is defined as follows

CB(i) = ∑
j,k 6=i

di jk(i)
d jk

. (2.24)

where d jk is the number of shortest paths from j to k, and di jk(i) is the number of those paths
that pass through i. Dividing one by the other gives the fraction of shortest paths that pass
through vertex i. For example, if we built a network representing international shipping routes,
the ports (i.e., vertices) with high betweenness centrality have the ability to extort benefits from
trade flowing across the network [25].

2.5 Bipartite Graphs

If the vertices in a graph represent two distinct sets of objects (e.g., buyers and sellers or
importers and exporters) and only vertices in different sets can interact, then we have a bipartite

graph. More formally, a bipartite graph G is the union of two disjoint sets U and V . If
e12 ∈ E(G) then u1 ∈U and v2 ∈V . In other words, the two endpoints of any edge must be in
different sets [89].

A bipartite graph can be ‘projected’ into two, one-mode projections, each representing one
set of vertices [13]. In each projection, two vertices are connected by an edge, only if they share
a neighbour in the original bipartite graph [89]. As an example we show a bipartite graph and
both projections in Figure (2.7). Here, we might represent each vertex in the set U (i.e., those
denoted with a number) represents a ‘buyer’, while each vertex in the set V (i.e., those denoted
with a letter) represents a ‘seller’. The edge e1A, between buyer 1 and seller A therefore, could
represent a sale of goods from A to 1. Note that buyers cannot purchase goods from other
buyers or vice versa. Interestingly, one-mode projections economic networks can tell us which
buyers or sellers are in direct competition with one another.

However, in creating one-mode projections some information is lost [89]. Consider an
example where two buyers i and j both trade with the same two sellers (not shown). Here, a
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Fig. 2.7 (Centre) a bipartite network comprised of two sets of vertices, U and V . Vertices in U
connect only to vertices in V . Hence there are no direct U–U or V –V edges. (Left and right)
one-mode projections of U and V . Projection U is obtained by connecting two U-vertices to
each other if they share an edge to the same V -vertex and projection V is obtained by connecting
two V -vertices to each other if they share an edge to the same U-vertex.

one-mode projection of the buyer set would show only one edge between i and j, where there
is in fact two paths between them in the bipartite graph. As such, we need to take into account
the number of paths (of length 2) connecting each set of buyer vertices in the bipartite graph.
If we define B as the adjacency matrix of the buyer projection, then number of paths can be
assigned as the weight wi j of the edge between i and j. Each element of the buyer’s adjacency
matrix B therefore becomes

bi j =

wi j, if i and j are connected with weight wi j

0, if i and j are not connected.
(2.25)

A similar adjacency matrix can also be derived for the seller’s projection.

2.5.1 Bipartite Clustering

By the standard measure, the clustering coefficient in bipartite graphs is always zero. To get
around this problem, clustering is often calculated on a one-mode projection of a bipartite graph.
However, as previously noted, using a one-mode projection leads to a loss of information and,
in some cases, can result in changing the meaning of what edges in the network are supposed
to represent [63]. An alternative option proposed by Lind et al. [92], is to calculate a bipartite
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clustering coefficient using cycles of four connections (i.e., quadrilaterals rather than triangles).
In this case, we call all vertices connected to i, first neighbours, and all vertices connected to
i’s first neighbours, the second neighbours (even though they are not directly connected to i).
Using this schema, the bipartite clustering coefficient can be defined as the fraction of common
edges between second-nearest neighbours (not counting i), and calculated as follows

C4b(i) =
qi

knn
i × ki(ki −1)/2

, (2.26)

where qi is the number of observed quadrilaterals around i, knn
i is number of second-nearest

neighbours, and ki(ki −1)/2 total number of pairs of neighbours (see Figure 2.8).

j

second neighbour

mfirst neighbour

i

n first neighbour

Fig. 2.8 Graph showing a quadrilateral qi formed by vertex i and vertex i’s first nearest
neighbours (m,n) and second nearest neighbour ( j).

In addition to finding the number of clusters in a graph, we might also want to know
whether those clusters are formed by strong or weak edges. For this we need to take into
account the weight of the edges that form each quadrilateral. For this purpose, Gilarranz et
al. [63] developed a weighted clustering coefficient, Cw

4b(i), which is a generalisation of C4b(i).
In this weighted case, the number of quadrilaterals is multiplied by the average normalised
weight1 of the two edges connecting vertex i as follows

Cw
4b(i) =

∑m,n qimn
( w̃im+w̃in

2

)
knn

i × ki(ki −1)/2
, (2.27)

where qimn is the number of quadrilaterals formed with i’s nearest neighbours m and n, and
w̃im and w̃in are the normalised weights of the edges between i and m and between i and n.
Normalisation can be calculated by dividing each edge weight by vertex i’s degree over the

1 Normalising the weights ensures that the clustering coefficient will take a value between 0 and 1.
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sum of its edge weights (i.e., the vertex’s strength centrality) as follows

w̃im =
wim(
CS(i)

ki

) . (2.28)

2.6 Generative Network Models

Studies of empirical networks have found that despite differences in the nature of their vertices,
many networks exhibit similar topological properties. This is important, as a common architec-
ture may point to a common pattern of network formation [18]. Two generative models often
seen in the trade network literature are the Erdős and Rényi (E-R) random graph model [41]
and the Barabási-Albert (B-A) preferential attachment model [14].

2.6.1 Random Graph Model

In the E-R random graph model, each pair of vertices is connected by an edge, with probability
p [41]. The degree distribution of a random network follows the binomial distribution

P(k) =
(

N −1
k

)
pk(1− pk)

N−1−k, (2.29)

where pk is the probability that a vertex has k edges, and (1− p)N−1−k is the probability that the
remaining (N −1− k) edges are missing. Where networks are sparse, the degree distribution
can be approximated by a Poisson distribution as follows

P(k)∼ e−k 〈k〉k

k!
. (2.30)

As such, the connectivity of vertices in this model is very homogeneous and the tail of this
distribution is narrow [18]. We can also say that the probability of a vertex having a degree
larger than the mean 〈k〉, decays exponentially. The E-R model is useful in that the expected
structure of graph can be specified through p. For example, where p = 0, there are no edges and
the graph empty. Alternatively, where p = 1, all possible edges are connected making complete
graph. However, we can also move incrementally, from p= 0 to p= 1 and measure how various
network statistics change along with p. Real-world applications of the E-R model are limited
however, as the majority of empirical networks display heterogeneous degree distributions [18].
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2.6.2 Preferential Attachment Model

The B-A preferential attachment model is thought to better reproduce the degree distributions
of many real-world networks, which suggests that real networks might be generated by similar
processes [32]. The preferential attachment works by attaching a new vertex to an existing
vertex, with a probability proportional to the existing vertex’s degree [18]. This model has been
usedacross many domains, including biological, physical and social networks [13]. In graphs
generated using this model, vertices in the tail of the distribution are far more connected than
would be expected by chance [107]. In this model, the network’s degree distribution P(k) is
approximated by a power-law

P(k)∼ k−γ , (2.31)

for values γ > 0, where γ is the scaling parameter of the distribution. If we take a logarithm of
Eq. (2.31), we obtain

logP(k)∼−γ log k+ c, (2.32)

where c is a constant. Therefore, log P(k) is expected to depend linearly on log k, with the
slope of this line given by γ , as observed in Figure 2.9. This kind of network is often referred to
as having a scale-free structure. The term ‘scale-free’ is used here, as the relationship between
degree and degree distribution is not defined on any particular scale [18].

In Figure 2.9 we show the respective degree distributions for two simulated networks,
the first using the E-R model [41], and the other created using the B-A model [14]. In both
cases the resulting networks have N = 1000 vertices, and approximately the same mean degree
〈k〉 ≈ 8, i.e., a typical vertex in either network is connected by eight edges. Given that values
of P(k) and k differ by orders of magnitude, we use a loglog plot, in which we show log(P(k))
as a function of log(k). We can see that despite having the same values for N and 〈k〉, the two
networks have widely different degree distributions. For the random network, vertex degrees
are distributed equally around the mean, with a maximum degree of only kmax = 18. As per
equation (2.30), we observe the exponential decay in the tail of the distribution. The range
of values of k are much broader across the B-A model network. One vertex in particular has
almost 500 edges, connecting it to half the network. However, these high degree vertices are
very rare in scale-free networks, with the vast majority of vertices having only a few edges [63].
In our example, 85% of vertices have k ≤ 8 (i.e., fewer than the mean degree 〈k〉).
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Fig. 2.9 The respective degree distributions of two graphs simulated using the E-R model [41]
and the B-A model [14].
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Chapter 3

Review of the Trade Network Literature

3.1 Introduction

Broadly speaking, the literature on the network structure of trade follows a singular approach,
as the objective of most authors is the same: to develop an appropriate network representation
of the international trading system, and explore the network’s statistical properties by applying
this model to empirical data. The result is a great number of different network models and
statistical measures that would be hard to summarise here without going to excessive length.
Rather than listing all the different models in the literature, we begin by outlining a generalised
trade network model that incorporates the most common elements from across the field of
economics. This model can then serve as a benchmark from which we can compare how
and where authors differ in their approach. In Section 3.2, we outline the various caveats to
this generalised model, and detail how network models have been developed to account for
binary (3.2.1), weighted (3.2.2), and bipartite (3.2.3) interpretations of international trade. In
Section 3.3 we explore how the implementation of these models affects the topology of trade
through reported statistical properties, including the degree distribution (3.3.1), degree-degree
correlations (3.3.2), clustering coefficient (3.3.3), and strength centrality (3.3.4).

The generalised trade network model can be described as follows. Consider a market of n

countries trading goods among themselves. On a graph, each country can be represented by
a vertex and trade between each pair of countries can be represented by an edge. If country i

exports goods to country j, then a directed edge is drawn from i to j, so that the element ai j = 1
in the corresponding n×n adjacency matrix A. Otherwise, no edge is drawn and ai j = 0 [62].
As a result, rows of the adjacency matrix represent countries that export goods, and columns
represent countries that import goods [43]. In addition, the sum of each row in the adjacency
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matrix gives the out-degree ∑ j ai j = kout, and the sum of each column gives the in-degree

∑i ai j = kin. If the trade data spans more than one time period, multiple graphs can be created,
where each adjacency matrix A(t) represents a snapshot of the network, and each element
ai j(t) denotes whether goods where traded between i and j at time t. This time dependent
model is often used, as the structure of the international trade network continuously changes
due to variation in the number of countries trading and due to the continuous rearrangement (or
‘rewiring’ in network terminology) of bilateral trade relations [62].

3.2 Network Construction

The varying network interpretations of international trade can be summarised as follows:

3.2.1 Binary Trade Networks

One of the earliest works on modelling international trade as a network, is that of Serrano and
Boguñá [122]. Here, trade is studied as a binary (i.e., unweighted) network. This is to say the
authors do not consider the ‘edge weights’ of the network in their analysis which can be used
to represent either the volume or value of trade between each pair of countries [43]. A binary
network can be recorded as either undirected or directed, depending on whether the direction
of trade is important to the analysis. In the undirected case, any trade, from either country i to
j, or from country j to i, is represented as an edge, meaning that in the adjacency matrix A of
the graph is symmetric ai j = a ji, and aii = 0, ∀i. Alternatively, in the directed binary case,
the direction of trade is specified in the adjacency matrix, such that elements ai j = 1 if trade is
directed from vertex i to vertex j, and ai j = 0 otherwise [128].

To create this network model, Serrano and Boguñá [122] extracted data from the UN
Comtrade database [141], which has become the primary source of trade data across the
literature. These data contain, for each country and each year, a list of imports and exports.
Each entry details the type of good traded, the corresponding source/destination, the volume
(in Millon Metric Tonnes, MMT) and value (in thousands of US$) of the goods, and the UN
Harmonized System (HS) classification code that identifies the class of goods traded (e.g.,
agricultural, electronics, chemicals, etc.). In this specific case, the top forty most exchanged
goods in the year 2000 were selected as a sample of the international trade network. In the
Comtrade data, an asymmetry is noted between the lists of imports and exports, so it is common
to find entries listing exports of a good from country i to country j, but not the corresponding
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entry of imports in country j, from county i [122]. These errors are due to the fact that there is
no global reporting agency for trade data, rather the onus is on exporting countries to report
exports and importing countries to report imports. Given the voluntary nature of this reporting
and the vast number of transactions taking place every year, these records are unlikely to
be 100% accurate. Many researchers in the literature simply chose one list over the other,
Squartini et al. [128] and Fagiolo et al. [45] use the import list for example. However, the
export data is considered more accurate than imports, based on the UN statistics division’s own
analysis [141], which we use throughout this thesis. Serrano and Boguñá [122] take a different
approach. They construct two alternative adjacency matrices from the data, Aimp using only
the list of import transactions, and Aexp using only the export transactions list. Each element
in these adjacency matrix is defined so that aimp

i j = 1 if country i imports from country j, and
aexp

ji = 1 if country j exports to country i. Thus where the data are in agreement, the elements
aimp

i j = aexp
ji . They combine these adjacency matrices to create a new adjacency matrix Â, that

completes the symmetry relation between imports and exports. Mathematically, this method
uses the Kronecker delta function, which is typically used to denote where two variables are
equal, and can be written as,

δi, j =

0 if i 6= j,

1 if i = j.
(3.1)

Using this function the complete adjacency matrix can be calculated as follows,

Â =
1

1+δ(Aimp+Aexp),2
[Aimp +Aexp]. (3.2)

Here, the Kronecker delta function δ(Aimp+Aexp),2 will return 1 where the adjacency matrices are
in agreement and 0 otherwise. Thus where aimp

i j = aexp
ji , the first part of equation (3.2) will be

1
1+1 = 0.5, and the later aimp

i j +aexp
ji = 2. This gives each symmetrical element in the complete

adjacency matrix as âi j = 1. In addition, where only one country reporting an import/export
transaction, the corresponding element in the complete adjacency matrix will also equal 1,
given that the first part of equation (3.2) will be 1

1+0 = 1, and the later aimp
i j +aexp

ji = 1. Only
where aimp

i j +aexp
ji = 0, will the complete adjacency matrix show no trade relationship. In this

way the complete adjacency matrix shows all connections that are relevant to at least one of
the two countries involved in each transaction [122]. Where neither country has recorded a
transaction, it is assumed that no trade took place. In the formulation above, edges are only
drawn where the volume of trade is strictly positive [128], so that each element of the network’s
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adjacency matrix is given by,

ai j =

1 if wi j > 0,

0 otherwise.
(3.3)

where the edge weight wi j is typically given in terms of total US$ worth of trade. However,
many others (see [153, 63] for examples) set a stricter threshold, when converting the weighted
data to a binary network. This threshold θ , is used to determine where there is a significant

amount of trade between pairs of countries [122], so that equation (3.3) becomes,

ai j =

1 if wi j > θ ,

0 otherwise.
(3.4)

Determining the value at which a given edge should be considered ‘significant’, is both a
subjective and contentious subject. Filtering edges based on either the value or volume of
trade is always going to remove some countries from the network. Doing so has a knock-on
effect in terms of censoring the resulting degree k of small or poor countries. This goes against
one of principal arguments in favour of the network approach, in that, every country should
be considered important, regardless of its size or wealth [122]. Unfortunately, there is no
method for deriving a threshold value that is not somewhat arbitrary, which is one of the main
limitations of the binary network analysis.

In the model above, trade is aggregated, so that all goods traded between two countries
are measured by a single value. However, Squartini et al. [128] decompose the global trade
data into the exchange of many individual commodities. So that, while vertices still represent
countries, the edges now represent the import/export of only a single commodity: such as wheat,
crude oil, or aluminium for example. Using this disaggregated data, Squartini et al. [128]
developed a new model with 97 different goods. In addition, the change in network topology is
measured over time, in a similar fashion to the example in the introduction of this chapter. So
for year t, the value (in US$) of good g traded from country j to country i is given by wg

i j(t). In
aggregate, the total value of all goods traded is calculated as,

wi j ≡
G

∑
g=1

wg
i j(t) (3.5)
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For the undirected-binary model, the value of goods traded is reinterpreted as a combination of
both imports and exports as follows,

wi j ≡
[

wi j(t)+w ji(t)
2

]
. (3.6)

3.2.2 Weighted Trade Networks

The main critique levelled at binary trade network models, is that (after filtering) it treats all
edges as if they were completely homogeneous [43]. Across many of the networks studied
(see [43, 123, 63, 21, 51]), vast differences (often by several orders of magnitude) are reported
in the volume (or value) of trade between different pairs of vertices. Thus it is clear that some
trade relationships are more important than others to the system as a whole. In order to take into
account the existing heterogeneity in the intensity of trade, weighted-network analyses have
been developed [17]. In Fagilo et al. [43] for example, each edge is assigned a ‘weight’ wi j > 0
in a weight matrix W, proportional to the amount of trade flowing through it. A weighted
network model is therefore, fully described by a set of n×n adjacency and weight matrices
{A,W}. In the directed case, these weightings are typically measured in US$ values or in
metric tonnes. Alternatively, the value of trade can be rescaled relative to the total trade flow
(see [128]) to give a percentage, as follows

ŵi j =
wi j

∑i ∑ j 6=i wi j
, (3.7)

while in the undirected case
ŵi j =

wi j

∑i ∑ j<i wi j
. (3.8)

In another approach, Serrano et al. [123] calculate the total trade flux across an edge. Here, the
flux fi j is given by the difference between the quantity of goods imported and exported by i to
and from j, with the direction of the edge pointed towards the net flow. The flux is weighted by
the total net trade balance, given by

ŵflux
i j = w ji −wi j. (3.9)

A corresponding flow matrix F for the weighted, directed network is constructed such that each
element fi j = ŵflux

i j , if ŵflux
i j < 0, otherwise fi j = 0 if ŵflux

i j ≥ 0, i.e., the direction of each edge
is towards the country with the positive net trade balance. An alternative interpretation of this
method is presented in Duenas and Fagiolo [40], where the authors also look at the absolute
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relative trade balance, defined as

ŵrel
i j =

∣∣w ji −wi j
∣∣

w ji +wi j
, (3.10)

where the bars around the numerator
∣∣w ji −wi j

∣∣, signify to take the absolute value. While the
net trade balance in equation (3.9) is measured in US$ of goods, the absolute relative trade
balance in equation (3.10) has no units and is on a scale [0,1] [40]. While both are measures of
bilateral trade balances, they have different economic interpretations. The net trade balance
simply accounts for the balance of trade in U.S. dollars, whereas, the relative trade balance
accounts for the asymmetry of trade independently of the traded volume. Thus , it is a measure
of reciprocity in bilateral trade relationships, such that, the extreme values, zero or one, are
signals of strong symmetry or asymmetry in bilateral trade, respectively [40]. Note that here, a
large net trade balance does not necessarily imply a high relative trade balance. For example,
where ŵrel

i j = 1, we can say that trade is flowing in one direction only. However this says
nothing about the amount of goods being traded [40].

As previously noted, there are discrepancies in the Comtrade data between the lists of
imports and exports [122]. Sometimes this leads to four different quantities being reported:
the value of trade exported from i to j as reported by county i which gives wexp

i j , exports from
j to i as reported by county j giving wexp

ji , and the same with imports reported by i giving
wimp

i j , and reported by j giving wimp
ji . Note that this situation only occurs when considering

aggregate trade, as exporters of specific commodities very rarely trade with one another [51].
Bhattacharya et al. [21] deal with this problem in the weighted-undirected case by defining
the edge weight (where weight here is a measure of the total trade volume between the two
countries in US$) as follows,

ŵi j =
wexp

i j +wexp
ji +wimp

i j +wimp
ji

2
. (3.11)

This procedure tends to average out the aforementioned discrepancies in the quantities re-
ported [21]. Fagiolo et al. [43], define weightings somewhat differently, in that the value of
trade across an edge is first divided by the exporting country’s GDP, to give the importance of
an edge relative to the exporting country’s economic size [43]. This is an interesting choice,
as a country’s GDP is not typically considered a ‘network’ measure. Conventionally, GDP is
defined as “the total market value of all final goods and services produced in a country in a
given period, equal to total consumer, investment, and government spending, together with
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the net value of foreign trade” [99], where the net value of foreign trade is simply the value
of goods exported subtracted by the value goods imported. This can be simplified into two
main terms that contribute to a county’s GDP: an endogenous term, often referred to as internal

demand which is determined by the production and spending due to a country’s domestic
economic processes, and an exogenous term—net trade, determined by interactions with other
countries [60]. The latter of these terms has been reinterpreted using network terminology,
which allows for a partial connection to be drawn between GDP and a country’s position in the
trade network.

Continuing from the definition offered by Fagilo et al. [43], where a weighted network is
described by a set of n×n adjacency and weight matrices {A,W}, with each element of the
weight matrix proportional to the US$ amount of trade flowing through it. A proportion of a
country’s GDP can be determined quantitatively through the following equations [60]. First,
the total import and export trade values can each be measured as a country’s strength centrality
CS(i) (see Chapter II), and calculated by summing over the rows and columns of the weight
matrix W, so that total imports is given by

Cimp
S (i) =

N

∑
i=1

ai jwi j, (3.12)

and total exports, by

Cexp
S (i) =

N

∑
j=1

ai jwi j, (3.13)

where wi j is the weight (measured in current $US of trade) assigned to the edge between
countries i and j. The net trade (or ‘net strength’) for country i is therefore given by

Cnet
S (i) =Cimp

S (i)−Cexp
S (i). (3.14)

To reach the final calculation of GDP, the net trade for country i, as follows

GDP(i) = internal demand(i)+Cnet
S (i), (3.15)

where internal demand values are typically taken from datasets of public accounts. We can
see that the above definition anticipates that the GDP is affected by the network structure of
trade. To what extent, depends on the share of GDP accounted for by net trade for each country,
but also the number of countries connected together via trade across the network (measured
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by each country’s degree k, or globally by the network’s edge density δ ). We know that the
share of GDP accounted for by net trade has been increasing in recent decades. Using data
dating back to 1870, Maddison [95] found that, historically, the average balance between net
trade and internal demand fluctuated around a constant value, even while global GDP was
increasing. This changed however, in the 1960s, when a transition towards ‘globalisation’ took
place, which saw the rapid integration of many developing economies into the global trading
system. For instance, the share of international trade that accounted for China’s GDP rose from
5% in 1970, to 65% in 2006 [148]. From the 1960s onward, Maddison [95] record average net
trade figures growing proportionately with world GDP, meaning that international trade has
become the dominant factor in calculating changes in GDP.

However, this change in GDP is not necessarily uniform across all countries. Several
country specific factors need to be taken into account. For example, international trade tends
to be more important for countries that are small geographically, or by population [108]. In
contrast, countries that are large and self-sufficient tend not to rely on trade and therefore see
internal demand as the primary factor in GDP calculations [108]. The trade network itself can
also be affected by geopolitical factors. Being surrounded by neighbouring countries with open
trade regimes for instance, can also increase the share of net trade in a country’s GDP [108].
There are also several possible interrelated feedback dynamics between net trade and internal
demand that could effect the calculation of GDP. For instance, imports can be used as the inputs
to domestically produced goods, which in turn can lead to increased internal demand [60].
Imports can also free up resources that would have been allocated to producing goods in which
a country did not have a comparative advantage1. As such, these resources can be reallocated
to more productive domestic industries, and again, increasing internal demand [60]. Trade can
also attract financial institutions to invest between countries. This Foreign Direct Investment
(FDI) can indirectly lead to increases in domestic business investments, government spending,
and private consumption [126].

These linkages led Garlaschelli and Loffredo [61] to test whether the GDP of each country2

can be used as a ‘hidden’ fitness variable which determines a country’s position in the network
(measured here by the country’s degree k), as well as correlations between second-order
1 Comparative advantage was proposed by Ricardo et al. [115], and states that countries have natural advantages,
called ‘factor endowments’ such as, land area, minerals, population, and so on, that help them produce certain
goods better than others.
2 The authors use total GDP rather than the per capita GDP (i.e., divided by the total population) which is more
commonly used in economics. Total GDP is a more accurate indicator of the aggregate economic activity of a
country [126].
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topological properties, such as the average nearest neighbour degree knn(k), local clustering
coefficient Cl(k). The hidden fitness model assumes that the probability P(ai j) of an edge from
i to j is a function of the values of a fitness variable ω assigned to each vertex and drawn from a
given distribution [61]. The fitness variable ω of country i, is calculated by normalising i’s GDP
by the total GDP of all countries in the network, such that ω(i) = GDP(i)/∑ j GDP( j) [61].
Note that in the model, a free parameter β is also introduced, such that the probability of an
edge from i to j is fully given by

P(ai j) =
βωiω j

1+βωiω j
, (3.16)

and where β is tuned so that the model reproduces the same number of edges observed in the
trade network [61]. Note that this model, is in effect, a binary networked version of the well
known Gravity model of trade [135], where the sum of GDP values of each pair of countries is
considered the most important determining factor that predicts the volume of trade recorded
in the Comtrade data.. Using a fitness model, Garlaschelli and Loffredo [61] find that the
predicted edge probability function matches well with empirical data, such that the degree of
country ki was found to be an increasing function of ωi and thus ultimately, GDP(i). This is
to say, richer countries tend to have more trade connections than poorer ones. Serrano and
Boguñá [122] also measured this link between degree and GDP, and found the correlation to be
relativity high, at 0.65, noting that many least developed countries (LDCs) such as, Angola,
Somalia, Rwanda, and Cambodia all had low degrees, and that developed industrial countries
were typically highly connected. However, they did note a significant number of cases in the
reversal situation, that is, low per capita GDP countries with a large number of connections,
with Brazil, China, and Russia being exemplars, in that they are rapidly developing, export
orientated economies with relatively low GDP per capita, but very high degrees [122]. Similar
general correlations are found for both the average nearest neighbour degree and the clustering
coefficient [61]. This shows that GDP, and the distribution of GDP across the network may go
some way to determining many topological properties of international trade. It is likely that
countries with higher GDP have more ability to foster trade due to the linkages outlined above.
However, it should be noted that the opposite is also likely true in that a country’s links to
international trade may also stimulate an increase in internal demand (cheaper imports leading
to increased productivity for example) [60].
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3.2.3 Bipartite Trade Networks

Fernandez et al. [51, 52], propose a bipartite approach to modelling international trade drawing
an analogy to mutualistic1 networks (see [63] for the ecological perspective on networks),
which are bipartite by nature. Here two different species (plants/pollinators for example)
compete among themselves for the opportunity to cooperate across species. Similarly in trade
networks, exporting countries compete among themselves for the opportunity to trade with
importing countries, and vice versa. Fernandez et al. [51] propose that self-interest may be a
common root cause of mutualism in both systems. In ecological systems, species are driven
by the need to survive the process of natural selection and perpetuate the growth of its own
species, and mutualistic strategies appear as a natural response to these pressures. In commodity
markets, on the other hand, businesses are driven by profit maximization in order to ensure
economic survival and growth. One way that businesses can achieve these aims, is to reach out
across international borders to find new markets or suppliers [51]. From these observations,
the authors hypothesise that exporters will be connected in the network based on a different
decision-making process than that of importers, and consequently, importers and exporters will
play different roles in the network’s topology.

It is important to note that this theory only applies when considering individual commodity
markets, and not international trade in aggregate. In the latter case, the adjacency matrices of
aggregated trade networks were found to be almost entirely symmetric, with approximately 93%
of directed edges being reciprocated [44]. So that, if country i exports to country j then country
j almost always exports to country i. This means that, at this level, there is no significant
difference between importing and exporting countries. However, the opposite is found at the
individual commodity market level, where importers almost never export the same good, or
vice versa [51]. Thus if country i exports a specific good to country j, then country j will
likely not export that same good to country i. These findings can be explained by considering
Richardo’s theory of comparative advantage [115]. In his 1817 treatise, “On the Principles of
Political Economy and Taxation”, Ricardo posited that countries in an international trading
system gain the most benefit from specialising in exporting only those goods in which they
have a comparative advantage, and importing those goods in which they do not. A comparative
advantage is derived from a set of so-called ‘factor endowments’, land, minerals, population,
and so on, which give a country the ability to produce certain goods at a lower cost that their
competitors. In this way, countries can pay for an array of imported goods by exporting highly
1 Mutualism is a cooperative relationship (symbiosis), beneficial to both species involved (as opposed to para-
sitism) [99].
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specialised goods at competitive prices. Thus, at the individual commodity level, it is correct to
assume exporters trade based on a different decision-making process than that of importers.
Whether or not this has an effect on the network’s topology can only be answered empirically.

Fernandez et al. [51, 52], do not explicitly define a bipartite trade network model, but
following Gilarranz et al. [63], upon which their work is based, it can be formulated as follows.
A bipartite graph, G = (U,V,E), is drawn, comprising two sets of vertices, U consisting of
{1,2, . . . , j} exporters, and V consisting of {1,2, . . . , i} importers, as well as a set of edges E

connecting importers to exporters. Each element ai j = 1 in the graph’s adjacency matrix A,
where importer i trades with exporter j, otherwise ai j = 0. In a bipartite system, trade is not
possible with others in the same set (i.e., importers are only allowed to trade with exporters), so
that all permitted edges in E are between sets U and V . Naturally, a bipartite model requires
adjusted network measures (see Chapter II for detailed descriptions of the calculations required)
to take into account the fundamental differences in topology. The results of using this method
are reported alongside the standard network measures in the sections below.

3.3 Reported Statistical Properties

The reported statistical properties of empirical trade networks can be summarised as follows:

3.3.1 Degree Distribution

A ubiquitous feature of literature are reports of extremely high levels of heterogeneity in the
degree distribution of the networks under study [19, 43, 54, 128, 129, 122, 21, 45]. The degree
distribution P(k), measures the probability of a randomly chosen vertex to have k connections
to other vertices [122]. In both the directed and bipartite cases, the degree distribution is taken
for both the in-degree, representing imports and the out-degree, representing exports [43]. The
resulting distributions are typically approximated by a power-law, such that P(k)∼ k−γ , where
γ is the scaling coefficient of the distribution (see Chapter II for a technical description of
these concepts). On log-log axis, the parameter γ also gives the slope of a linear model fit.
Few authors give estimates for this parameter, owing to the difficulties of fitting power-law
models to such small n observations, but those that do, find that in aggregate trade networks
γ ≈ 2.6 [122], whereas in individual commodity markets the exponent is typically found in
the range γ ≈ 1.3± 0.2 [19]. In real terms, this means that the majority of countries in the
international trade network have very few trade partners, whereas, countries in the tail of the
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distribution are far more connected than would be expected by chance [44]. Naturally, the
causes and consequences of this large inequality in trading opportunities has become an issue
of interest to economists and international development researchers alike.

Baskaran et al. [19] point to the Heckscher-Ohlin (H-O) model [110] of international trade
as a possible explanation for these empirical results. The H-O model is, in essence, a formalised
version of Ricardo’s theory of comparative advantage. The central theorem of the H-O model
states that bilateral trade flows between two countries are due to differences in what Ricardo
calls ‘factor endowments’ (see above). The theorem goes on to state that a country will export
those goods that use factors which are in abundant supply, and import goods that use factors that
are scarce [100]. Baskaran et al. [19] argue that, given the H-O theorem, only a few countries
will specialise in exporting a specific good whereas many countries will import those goods for
which they lack the required factor endowments to produce. Therefore in a network setting we
should expect each market to be comprised of a small group of highly specialised exporters
connected to a larger group of non-specialised importers. While this theory does suggest a high
level of degree heterogeneity is to be expected, it is not clear why a power-law distribution in
particular, should be observed.

Observations of power-law degree distributions also imply a strong deviation from the
classical random graph theory of Erdős and Rényi [41] (see Chapter II), which would predict an
exponential decay [122]. The empirical results rather suggest that the ‘preferential attachment’
model of network growth is a more likely explanation [13] (see Chapter II), as the exponent γ is
found to be within the range defined by many other scale-free networks [122, 19, 13]. Serrano
and Boguñá [122] hypothesise that the preferential nature of growth in these trade networks is
likely to be due to risk-averse consumers preferring to purchase goods from well-established
exporters. However, they also anticipate that the preferential attachment mechanism could
differ between countries, depending on the particular political and economic situation [122].

One issue that has gone largely unremarked in the literature is the number of deviations
from the power-law behaviour of trade network degree distributions. For example, Serrano and
Boguñá [122] observe that in their data, the power-law behaviour does not extend through the
whole range of the degree distribution, rather for small values of k, the distribution is more
similar to a random graph model. Garlaschelli and Loffredo [61], on the other hand, find
a power-law only accounts for a small part of the whole degree distribution, and is cut-off
at high values of k [62]. Furthermore, Fagiolo et al.[45] find power-law behaviour only in
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the middle of the distribution. Looking at individual commodity markets, Wu and Guclu
[153] find the distributions of both export and import degrees exhibit inverse exponential
decay, rather than power-law behaviour. Finally, in the bipartite case, the degree distribution
for importers and exporters (when averaged over all commodities) follow heterogeneous
patterns [52]. While the degree distribution, in the case of exports is approximately a power-
law, the import degree distribution is approximated better by a truncated power-law in the form
P(k)∼ k−γe−k/k [52]. While Fernandez et al. [52] offer an interesting explanation as to why
the two degree distributions differ (see Section 3.2.3 above), no explanation is offered as to
why the network is formed by these two specific distributions.

3.3.2 Degree-Degree Correlations

Two other network statistic often discussed in the literature relate to degree-degree correlations
across the network. The first is a measure of correlation between the in- and out-degree of each
country in the network, and the second between a country’s own degree, and the degree of its
‘nearest-neighbours’, meaning those countries that are in direct contact (see Chapter II). The
first case only applies to aggregated trade networks, as in bipartite and disaggregated trade net-
works, importers tend not to export and vice versa [51]. Where applicable, Serrano et al. [122]
found that the in- and out-degrees across the international trading system are highly correlated,
with a coefficient of r = 0.91. This is perhaps not surprising given that, as noted above, the
trade network is almost entirely symmetric, with 93% of edges being reciprocated [44]. This is
to say, that for every export relationship (measured by the out-degree) between two countries,
there is likely to be a reciprocal import relationship (measured by the in-degree) as well, and
hence the correlation between the two.

The second case concerns the correlation between the average nearest-neighbour degree and
degree knn(k), which is effectively a measurement of the disposition of countries in the network
towards trading with other countries in a similar position as themselves. Here, most authors find
that vertex degree and average nearest-neighbour degree are negatively correlated, with caveats
in some cases [43, 61, 62, 122, 128]. This is to say, that the international trading system
is characterised by a disassortative pattern, whereby countries with many trade partners are
typically connected with countries with few, and vice versa [128]. This is taken to imply a kind
of hierarchy in the network, between the ‘haves’ (high-degree countries) and the ‘have nots’
(low-degree countries) [43]. Taken further, knn(k) can be plotted to give a distribution showing
the precise relationship between these two variables. Interestingly, Squartini et al. [128] find a
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highly linear trend, whereas, Fernandez et al. [52], and Serrano and Boguñá [122] both find a
power-law decay in the form knn(k)∼ kγ . In the latter case, γ = 0.5±0.05, but the power-law
behaviour is only found in the tail of the distribution. Either way, this correlation appears to
be highly stable over time, and does not change when measuring the network using either the
directed or undirected approaches [43, 128]. The caveats to these findings come from analysis
of weighted networks (which are discussed below) and when considering measuring the trade
network of individual products. On the individual product level, the majority of markets
still display power-law behaviour in knn(k), however, in a few isolated cases, an assortative

behaviour can is found, such that highly connected countries tend to associate with those that
are alike [51]. A critique of this measure is offered by Squartini et al. [128], who compare
the knn(k) correlation between empirical trade networks and similar, but randomised, trade
networks. They find that the knn(k) correlations coincide, and argue that disassortativity is
simply an effect of structural constraints of the network. They find the only way to remove
assortativity, i.e., to have knn(i) independent of k(i), is to force it through a fixed generative
mechanism. Naturally, these findings diminish the relative importance that should be placed on
interpreting assortative/disassortative behaviours in international trade networks.

3.3.3 Clustering Coefficient

Along side the average nearest-neighbour degree, clustering coefficients are also thought to
be an important indicator of the structure of international trade networks. The local clustering
coefficient Cl(i), represents the fraction of neighbours of a given country, which are also
neighbours of each other [128]. The global clustering coefficient 〈Cl〉, is simply the average
of the local coefficients across the network, and can be considered the probability that two
neighbours of a randomly selected country are themselves connected to each other [13, 35]. On
the global scale, trade networks are found to be far more clustered than would be expected, with
〈Cl〉= 0.65, approximately three times the values found in a random graph model of the same
network [122]. The local clustering coefficients are found to be negatively correlated with coun-
try degree, meaning that trade partners of highly connected countries are poorly interconnected,
whereas partners of poorly connected countries are highly interconnected [128, 43]. Serrano
and Boguñá [122] finds that this relationship can be estimated by a power-law distribution in
the form Cl(k) ∼ k−γ , with γ = 0.7± 0.05. In the bipartite case, Fernandez et al. [52] find
two different behaviours. For exporters, the bipartite clustering coefficient / degree correlation
Cl4b(k), can best be fitted with a power-law distribution of the form Cl4b(k) ∼ kγ , with the
exponent γ =−1.3±0.3, across varying commodity markets. For importers, the value of the
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clustering coefficient decrease monotonously with the country degree [52].

Similar to the critique of average nearest-neighbour degree / degree correlations, Squartini
et al. [128] compare Cl(k) between empirical trade networks and randomised simulations to
find that, again, the correlations are in very close agreement. This suggests that the clustering
coefficient observed is simply explained by a constraint on the degree distribution, and finding
a correlation between the two does not necessarily imply some higher order mechanism. The
authors note that these results, taken together, highlight the importance of reproducing empirical
degree distributions in network models of trade [128].

3.3.4 Strength Centrality

In weighted network representations of the international trading system, the strength centrality
CS of each country, and the distribution of these centralities, is an important property studied
in the literature. Recall from Chapter II that the strength centrality is a measure of the sum
weight of a vertex’s edges, and can be interpreted as the total trade ‘intensity’ carried by each
country [44]. Overall, the distribution of these values is found to be heavily right (or positive)
skewed, such that the mass of the distribution is concentrated around low-intensity trading
nations. Consequently, only a very few countries account for the majority of trade by volume,
across the network [44]. Similarly, Bhattacharya et al. [21] found that the distribution of
individual edge weights can be estimated by a log-normal distribution (i.e., also right skewed),
such that we can say that a handful of edges account for the majority of trade across the network.

Researchers have also considered whether there is a correlation between a country’s strength
centrality and degree. Fagiolo et al. [44] find that CS(k) follows a general positive linear trend,
such that highly-connected countries tend to be connected with stronger edge weights and
vice versa. In the bipartite case, Fernandez et al. [52] find that this correlation follows a
power-law pattern in the form CS(k) ∼ kγ , where the exponent 1 ≤ γ ≤ 3 depending on the
commodity market sampled. Bhattacharya et al. [21] finds that there is also a correlation
between a country’s strength centrality and its GDP, in the form of a power-law, such that
CS(i)∼ GDPi

γ , where γ ≈ 1.26. However, this is not considered a particularity surprising result,
as it simply confirms that countries with a higher GDP will be able to trade more than those
with a lower GDP [21]. One final strength correlation studied is the average nearest-neighbour
strength, which effectively measures the intensity of edge weights between the trade partners
of a given country, and a country’s own strength centrality. This relationship, given by Snn(CS),
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is a measures of network strength assortativity/disassortativity [44]. In Fagiolo et al. [43], only
a weakly disassortative relationship is found using this method.

3.4 Conclusion

Taking these results together, we can briefly summarise that the structure of the international
trade network as follows. Countries in the network are highly heterogeneous across many
properties. Trade in aggregate is highly reciprocal, but otherwise bipartite [51]. Connectivity is
possibly distributed in a power-law fashion [19]. On the global scale, trade tends to be tightly
clustered [122]. Trade across the network is characterised by two disassortative patterns. First,
highly-connected countries typically trade with poorly-connected countries [128]. Second, the
trade partners of highly-connected countries are, themselves, connected to poorly-connected
countries [122]. However, trade networks are less disassortative when trade volumes are
considers. Here, highly-connected countries tend to be connected by stronger trade links and,
consequently, account for the majority of trade across the network [43].



www.manaraa.com

Chapter 4

Growth in Network Models of
Commodity-trade Markets

4.1 Introduction

A ubiquitous feature in the trade network literature are reports of extremely high levels of
heterogeneity in the degree distribution of the networks under study [19, 43, 54, 128, 129, 122,
21, 45]. These results, typically presented as power-law distributions, are taken to imply a so-
called ‘preferential attachment’ model of network growth (see Chapter III for a detailed review).
Recently however, serious critiques have been levelled at the methods used in these studies,
and consequently, we may need to re-evaluate many of the conclusions drawn [32, 55, 130].
In this chapter, we outline the most common of these critiques and identify more appropriate
methods for measuring the degree distributions of empirical networks. We also employ an
alternative methodology that directly measures the growth in network connectivity. Using
this method, we show that growth in many trade networks is constrained, resulting in a far
different topology than the preferential model would imply. We develop a new single parameter
model that reproduces many of the statistical features of empirical networks found across a
wide array of commodity markets. The model can also reduce to a pure preferential growth
model via tuning a single parameter, giving us the ability to see just how far reality falls short
of this well-known theoretical ideal. This model could have wide reaching implications, both
in terms of estimating future market growth and the robustness of critical markets. In the first
part of this chapter, (Section 4.2), we present an in-depth commentary on the critiques of those
methods commonly used in measuring the degree distributions of trade networks. In Section
4.3 we develop a new model of constrained growth and outline its main features and behaviours.



www.manaraa.com

4.2 Measuring Network Degree Distributions 43

Finally, in a concluding section (4.4), we discuss the implications of our findings for estimating
future market growth and regarding the structural robustness of critical commodity markets.

4.2 Measuring Network Degree Distributions

4.2.1 Background

To put this discussion in context we first briefly reiterate and expand on the Barabási and
Albert’s [14] preferential attachment model (see Chapter II). The Barabási-Albert (B-A) model
works by adding new vertices over time, that attach themselves preferentially to other highly
connected (i.e., high degree, k) vertices already present in the network [15]. New vertices are
thought to connect preferentially due to the advantages of being attached to other well-connected
vertices. The model captures these features by the following two step process:

(a) Starting with a small number (m0) of vertices, at every time step add a new vertex vt with
m edges (where m ≤ m0)—connected to the vertices already present in the system.

(b) When choosing the vertices to which the new vertex vt connects, the probability Π that a
new vertex will connected to an existing vertex vi, depends on each vertices’ connectivity
ki, such that

Π(ki) =
ki

∑ j k j
. (4.1)

After t time steps, the model leads to a network with N = t+m0 vertices and m0+mt edges.
Networks generated via this process are said to have a ‘scale-free’ topology, identifiable by a
power-law degree distribution following,

P(k)∼ k−γ , (4.2)

with the exponent γ (usually in the range 2 < γ < 3), indicating the rate of decay. Note that γ is
independent of the only parameter in the model, m the number of edges added at each time
step [15].

While this model has support in the literature, evidenced by the numerous reports of power-
law behaviour (see Chapter III), several authors have recently called into question many of
the fundamental assumptions behind this body of work (not just trade networks in particular).
Clauset et al. [32], Fox Keller [55], and Stumpf [130], have each sought to re-evaluate the
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evidence that has been presented and think critically about concluding that these networks are
formed via the preferential attachment model, particularly when those conclusions are based
solely on reports of power-laws. Their concerns stem from the fact that theories for power-law
behaviour arose from large theoretical systems, as opposed to small real-world systems [130].
Specifically, in the case of trade networks, there are typically very few observations in the data,
as the number of countries trading a specific commodity is limited (typically 50 < N < 150).
The small number of observations can cause large fluctuations in the tail of the network’s
degree distribution due to finite sample size effects [32]. This means that, even if a given
network was formed by preferential attachment, the observed degree distribution would be
extremely unlikely to exactly follow a power-law for all values of k, making it difficult to
conclude whether a particular distribution is a power-law or not [130]. As a heuristic, we
should expect that approximate power-law behaviour will be present in at least two orders of
magnitude over both axes to be considered viable [130].

While these issues make verifying power-laws empirically a difficult procedure, numerous
researchers compound the problem by neglecting to apply robust statistical procedures in
their analysis [130], relying instead on only descriptive evidence from the network’s degree
distribution. We use Baskaran et al. [19] as an example and reproduce their results in figure 4.1,
but it is common for power-laws to be confirmed in a similar fashion (see [43, 54, 128, 122, 21]
for examples). Looking at figure 4.1, we see the frequency of degrees in various commodity
markets as plotted histograms on doubly logarithmic (log-log) axes. Baskaran et al. [19] reason
that by taking the logarithm of both sides of equation (4.2), we obtain

logP(k)∼−γ log k. (4.3)

Accordingly, the log of P(k) is expected to depend linearly on the log of k. On a log-log plot, a
power-law should therefore present itself as a straight line, with the slope given by −γ . While
this method is certainly straightforward, Clauset et al. [32] points out that our human ability to
discern patterns in data, even where there are none, can lead researchers to confirm power-laws
in almost any case using this qualitative criteria. Indeed, Baskaran et al. [19] conclude that the
plots in figure 4.1 provide sufficient evidence that the selected commodity markets should be
considered as having a scale-free topology. Several researchers develop this method further,
typically by adding a line of best fit and estimating the slope (and thus the exponent −γ),
by performing a least-squares linear regression (see [51, 52] for examples). This also gives
standard errors for the slope, and the fraction r2 of variance accounted for by the fitted line,
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which is taken as an indicator of the quality of the fit [32]. However, Clauset et al. [32] note
that this method1 is highly problematic and can suggest power-law fits to data that are known
to be non power-law distributions.

4.2.2 Methods

A more robust statistical method for testing whether or not a power-law hypothesis is plausible,
is described at length in Clauset et al. [32]. They recommend using the Kolmogorov-Smirnov
(KS) statistic [50], applied to the empirical distribution function (herein CDF) of the data as a
goodness-of-fit measure and to generate p-values. The KS statistic is typically used to quantify
the distance (sensitive to both location and shape) between two probability distributions. In this
case, the supremum (greatest) distance Dn can be calculated by

Dn = sup
x

|Fn(x)−F(x)|, (4.4)

were Fn(x) is the EDF of the n observed vertex degrees, and F(x) is the cumulative distribution
function (CDF) of the hypothetical power-law model that best fits the data. The hypothesis for
this test would be as follows:

• H0: The data follow a power-law distribution.

• H1: The data do not follow a power-law distribution.

If the data is a perfect fit, the KS statistic, Dn = 0. Larger values of Dn indicate a poor fit. As
such, the null hypothesis is to be rejected if Dn is greater than some critical value (found by
a lookup in a KS table) determined by the level of statistical significance required. Here, we
consider the result to be statistically significant where p > 0.05 in the Kolmorogov-Smirnov
test. Note that the KS tests assumes independence between the distributions under consideration.

As noted above, finite sample size effects can cause large fluctuations in the tail of the
degree distributions [32]. We should, therefore, only expect a power-law to fit above some
lower bound, kmin. Determining this point and discarding all data for k < kmin becomes very
important to obtain accurate results using the KS test. There are several ways to approximate
the correct value of kmin, including using Bayesian information criterion (BIC) for example.
However, in an earlier paper, Clauset et al. [33] develop a method that re-uses the KS statistic
outlined above, thereby, reducing the complexity of the analysis. This method involves simply
1 Technical details of these critiques are described in the appendix of Clauset et al. [32].
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Fig. 4.1 Empirical degree distributions for several commodity markets in 1980. Note the log-log
axis. Reproduced from Baskaran et al. [19, p.14, fig.1].



www.manaraa.com

4.2 Measuring Network Degree Distributions 47

applying the KS statistic to a model fitted to data in the region k ≥ kmin, for each value of kmin

and selecting that value of kmin that minimises Dn. To understand this concept visually, one
might imagine trying to find the point beyond which, a somewhat concave, degree distribution
becomes a straight line on a log-log plot.

Even if a distribution is well fitted by a power-law using the method above, it does not
necessarily prove a power-law is the correct distribution for the data. There may be several
other heavy-tailed distributions that match the data equally well, if not better [32]. Failing to
consider these alternative distributions is a large weakness in the current trade network literature,
which is perhaps due to the overwhelming prominence of the Barabási-Albert model [14],
which is undoubtedly the most cited work in the field. Outside of trade network research, it is
more well known that many different models can result in the same network structure being
produced [55]. Thus, finding a particular distribution does not necessarily imply a specific
mechanism giving rise to it [130]. In fact, researchers have shown that a scale-free network
topology can be generated by a number of different models, with and without the need for
a preferential attachment mechanism [88, 58, 154]. In addition, Barabási himself outlined
several other network growth models that do not result in power-law degree distributions [14].
For example, in a lesser known variant of the A-B model, preferential attachment is replaced
with a uniform attachment mechanism. In contrast with the A-B model, the resulting degree
distribution follows an exponential form, which shows as a concave downward curve on a
log-log plot (or more appropriately as a straight line on a lin-log plot). Barabási [14] outlines
the model as follows:

(a) Similar to the A-B model, start with a small number (m0) of vertices, and at every time
step add a new vertex vt with m(≤ m0) edges

(b) The new vertex vt connects with equal probability to the vi vertices already present in the
system, independent of their degree ki, such that

Π(ki) =
1

(m0 + t −1)
. (4.5)

As noted the degree distribution follows the exponential form,

P(k) = B exp(−βk), (4.6)
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with the coefficients1 given by

B =
e
m
, β =

1
m
. (4.7)

While their is no economic theory to imply that this is a more plausible model of trade network
growth, it is useful to be aware of other possibilities, when judging the results of any statistical
analysis.

4.2.3 Results

If one follows the method outlined above, selecting the best model among a given set of
plausible models is relatively straightforward. We need only apply the same KS statistical test
to each alternative model, fitting the appropriate distributions, and use the resulting p-values
to rule out models that do not meet the level of statistical significance. If we are left with
several statistically significant alternatives, we can use the goodness-of-fit measures to make a
judgement as to which has the strongest case. So for example, if among a set of statistically
significant distributions, the distance D between a power-law fit and the data is low, while the
distance for the remaining distributions is high, then the case for a power-law fit is strengthened.

We apply this model selection method to data from the UN Comtrade dataset [141], mea-
suring the degree distribution of the top ten internationally traded commodities2. From the
database, we select annual transaction data over the period 1992–2014, which is the longest
uninterrupted period of data available. Trade data prior to 1992 does exist, however, the dissolu-
tion of the Soviet Union (officially on December 25, 1991) makes comparing the network before
and after the event rather contentious. The Soviet Union split into the Russian Federation and
fourteen other post-soviet states3, leading to a large jump in the number of trade relationships
with those who previously imported from—or exported to—the Soviet Union. This event also
ended the era of large trading blocks, which had effectively divided the developed world in
two for several decades prior. While understanding the effect of this event on the network
structure of trade would be an interesting topic on its own, for our purposes, combining trade
data from the period before and after, does not seem like a sensible idea as this event might
not be considered part of the natural evolution of the network. The data selected are used
to construct a unweighted-directed adjacency matrix of a network, where vertices represent
1 where e refers to ‘Euler’s number’, i.e., the base of the natural logarithm.
2 The top ten internationally traded commodities used in this study; Petroleum Oil, Natural Gas (Liquefied), Coal,
Wheat and Meslin, Maize (Corn), Coffee, Cotton, Cane and Beet Sugar, Silver, and Gold.
3 Post-soviet states include: Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia,
Lithuania, Moldova, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan
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countries, and edges denote the import/export of a commodity between those countries. The
Matlab function to do this is reproduced in Appendix A1.

The results of our statistical analysis of the Comtrade data are shown in tables 4.1 and 4.2.
The most notable result is that none of the degree distributions, for either imports or exports,
can be considered a plausible power-law distribution (see the first set of columns in table 4.1
and table 4.2). An inspection of the model fits in figure 4.2 or figures A.1 and A.2 in Appendix
A3 show that a power-law fit would probably not even be considered, if one were to approach
these data without the Barabási-Albert (B-A) model in mind. Four of the export markets and
five of the import markets are plausible exponential distributions (see the second set of columns
in table 4.1 and table 4.2), with Cotton and Crude oil being very strong fits. The third model fit
tested is an exponentially truncated power-law in the form

P(k)∼ k−γe−βk. (4.8)

This model is essentially a combination of the latter two models, which typically presents itself
on a log-log plot as a straight line that tapers into a downward concave curve in the tail of
the distribution. We find this model is a plausible fit to nine out of ten of the selected export
markets but only three import markets (see the third set of columns in table 4.1 and table 4.2).

These results shed some light on a particular argument made in the literature. Specifically,
that importers and exporters differ in their decision making process, and consequently play
different roles in the network’s topology (see Fernandez et al. [51, 52]). If this theory is
true, we should find a marked difference in the resulting degree distributions of import and
export markets. While it is fair to say that exports markets are likely to be generated by a
different process (i.e., one that likely leads to a truncated power-law) to the import markets, we
find no degree distribution is strictly unique to importers or exporters. Therefore, our results
run counter to the assertions in [52]. Note that several import markets1 do not fit any of the
three models selected. Having tested several other distributions (Weibull and Log-normal for
example), we found none that result in better model fits than those given by the exponential
model. Given the hundreds of other commodity markets we could test, and the number of
possible models, it is doubtful we would find a single distribution to fit all markets.

1 Specifically; Coal, Maize, Natural gas, Sugar, and Wheat
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Fig. 4.2 Empirical degree distributions (exports down the left, imports down the right) for the
wheat market. Data source: [141].
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Power-law Exponential Truncated

Market p D kmin γ p D β p D γ β

Coal 0.00 0.38 34 -3.02 0.02 0.23 -0.09 0.24* 0.15 -0.40 -0.03
Coffee 0.00 0.35 50 -2.73 0.84* 0.07 -0.04 0.02 0.18 -0.19 -0.03
Cotton 0.00 0.31 24 -3.03 1.00* 0.05 -0.08 0.18* 0.18 -0.20 -0.05
Oil 0.01 0.34 19 -2.90 1.00* 0.06 -0.12 0.55* 0.15 -0.18 -0.08
Gold 0.00 0.38 3 -1.02 0.00 0.39 -0.15 0.48* 0.14 -0.48 -0.05
Maize 0.00 0.34 37 -2.64 0.00 0.31 -0.08 0.97* 0.07 -0.34 -0.03
Gas 0.01 0.25 27 -1.78 0.00 0.32 -0.08 0.48* 0.11 -0.31 -0.04
Silver 0.02 0.25 22 -1.76 0.17* 0.17 -0.07 0.56* 0.12 -0.35 -0.03
Sugar 0.02 0.20 27 -1.52 0.00 0.30 -0.06 0.40* 0.11 -0.28 -0.03
Wheat 0.00 0.38 39 -2.52 0.01 0.23 -0.08 0.33* 0.13 -0.39 -0.03

Table 4.1 Degree distribution model fits for selected export markets. Statistical significance is
indicated by (*), where p > 0.05 in the Kolmorogov-Smirnov test. Data source: [141].

Power-law Exponential Truncated

Market p D kmin γ p D β p D γ β

Coal 0.00 0.50 12 -2.80 0.00 0.38 -0.13 0.00 0.38 0.07 -0.13
Coffee 0.00 0.40 43 -2.81 0.21* 0.13 -0.06 0.00 0.68 -52.34 2.46
Cotton 0.00 0.39 2 -0.75 0.62* 0.12 -0.04 0.48* 0.14 -0.26 -0.04
Oil 0.00 0.38 4 -1.09 0.61* 0.14 -0.07 0.43* 0.16 -0.23 -0.07
Gold 0.04 0.24 20 -2.03 0.21* 0.17 -0.09 0.00 0.97 -52.99 2.49
Maize 0.00 0.42 15 -2.89 0.00 0.33 -0.14 0.00 0.43 0.27 -0.14
Gas 0.00 0.42 16 -2.96 0.00 0.30 -0.13 0.00 0.40 0.29 -0.13
Silver 0.00 0.37 19 -2.83 0.05* 0.23 -0.08 0.15* 0.19 -0.05 -0.08
Sugar 0.00 0.39 23 -2.80 0.01 0.24 -0.09 0.00 0.35 0.24 -0.09
Wheat 0.00 0.49 14 -3.08 0.00 0.39 -0.15 0.00 0.45 0.20 -0.15

Table 4.2 Degree distribution model fits for selected import markets. Statistical significance is
indicated by (*), where p > 0.05 in the Kolmorogov-Smirnov test. Data source: [141].
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4.3 A New Model of Constrained Network Growth

4.3.1 Methods

Considering the failure of these methods to find a comprehensive model and fit that could
explain all markets selected, we apply an alternative method that directly measures the growth
in network connectivity over time, rather than the resultant degree distribution which is only an
artefact of that process [114]. This method was introduced by Barabási himself in one of his
earlier papers [15], but seems to have gone unused in the network literature, bar one notable
exception [114]. Connectivity growth is controlled by the edge-attachment rate Ak, which
measures the rate at which edges attach to a vertex of degree k. Attachment rates in networks
generated via preferential attachment are found to grow asymptotically linear in k (examples
include citation networks and the world wide web [114, 15]). That is to say, the rate at which
new edges attach to vertices, will correlate positively with the vertex degrees. To measure
the empirical attachment rate in commodity trade networks, we first measure the degree of
each country (vertex) in the first year available, then count the number new bilateral trades
(edges) relating to that country over the following year. We repeat this process for each year
1992–2014, and for each of the selected markets. By aggregating these data, we can calculate
the overall yearly attachment rate.

The results of this method are shown in figure 4.3. We can see that the attachment rate Ak

increases approximately linearly in k, where k < 50, but levels off in the tail of the distribution.
Consequently, the attachment rate significantly under-performs our expectations based on a
preferential attachment mechanism. For example, we would have expected empirical observa-
tions of Ak to be 2-3 times higher in the tail of the distribution (e.g., Ak ∼ 60, where k = 125),
if the Barabási-Albert model [14] were being used to generate these networks.

In addition, we find that edge attachments can form both intrinsically, via edges linking
existing market participants, and extrinsically, from edges connecting new entrants to the
market. This distinction appears to have gone unnoticed in the literature, perhaps on account
of Barabási’s formulation [15] only allowing for the latter. This is not necessarily a criticism,
as extrinsic network growth models can be very apt in many cases. Guillaume and Latap [72]
for example, study a Film/Actor network, which connects actors together who star in the
same movies. Accordingly, the attachment of new edges (between actors) in this network is
always contingent on the creation of a new vertex (the release of a new film). However, this
growth model is not applicable to commodity-trade networks, or possibly for trade networks in
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general. Here, two pre-existing vertices can attach together independently, and do so often. In
fact, looking at the origins of edge-attachment events in figure 4.4, we find that intrinsic edge
attachments greatly outnumber extrinsic attachments, and that this disparity appears to be only
growing over time.

4.3.2 The Model

We incorporate the difference between intrinsic and extrinsic growth, in a new generative model
of constrained network formation. Central to this model is the parameter λ , which measures
the probability on a scale 0 ≤ λ ≤ 1 of a new edge being generated extrinsically via the addition
of a new vertex, as opposed to connecting pre-existing vertices intrinsically. Changing this one
parameter can constrain extrinsic growth in the model in-line with empirical based estimates.

Briefly, this new model is outlined as follows. A graph is formed by G = (V,E), where
V is a set of vertices, and E a set of edges between them. Time t refers to number of t−edge
attachment events. At time t0, a small seed network is formed of two vertices, connected
together by an edge. The model then proceeds to evolve the graph each time step, as follows:

(a) Extrinsic Growth: With probability λ , add a new vertex vt and attach it to a pre-existing
vertex vi ∈ G, chosen via preferential attachment, where the probability of attaching et to
vertex vi is relative to its connectivity ki, such that

Π(ki) =
ki

∑ j∈G k j
. (4.9)

(b) Intrinsic Growth: Otherwise, attach an edge et between two pre-existing vertices in
G, starting at a random source vertex and attached to a target vertex chosen via the
preferential attachment mechanism in equation (4.2).

Note that in step (b), edges can only be connected once. If the model does select a duplicate edge,
another target vertex is chosen following equation (4.2). If all possible edges are connected,
the model returns to step (a).

The bipartite case

Commodity markets are bipartite in nature (see Chapter III), with the distinction being between
sets of importers and exporters. We account for this fact by developing a bipartite version
of the model, which we outline below. However, it should be noted that the only distinction
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between each set in this version of the model is the value of λ , which can take different values
for importers and exporters. As such, we can model either set independently using the simpler
unipartite model, and do so for modelling the results later in this section.

The bipartite model is outlined as follows. A bipartite graph is formed from the triple
G = (U,V,E), where U and V are two disjoint sets of vertices, and E ⊆ U ×V is the set of
edges between them. Time t refers to number of t−edge attachment events. At time t0, a
small seed network is formed of at least two vertices, one in each set, connected together by a
single edge. The model then proceeds to evolve the network over time via two independent
mechanisms:

(a) Intrinsic Growth: At every time step t, attach an edge et between two pre-existing vertices
in G, chosen via preferential attachment [15]. Specifically, the probability of attaching et

to vertex v j ∈V is relative its connectivity k j, such that

Π(k j) =
k j

∑i∈V ki
, (4.10)

and similarly, the probability of attachment to vertices vi ∈U is relative to ki.

(b) Extrinsic Growth: With probability λ we add a new vertex vi ∈ U , attached to a pre-
existing vertex v j ∈V via preferential attachment outlined in equation (4.10). Similarly,
a vertex is added in V with probability λ and attached to U via preferential attachment.
The parameter λ measures the approximate rate at which vertices are added to the graph
relative to the number of t−edge attachment events. So for example, where λ = 1, one
new vertex is added for every edge. Where λ < 1, extrinsic growth is constrained.

Edges in the bipartite model can only be connected once. The selection of duplicate edges are
dealt with by a similar process to that outlined above in section 4.3.2.

4.3.3 Main Results

The main feature of the model is that increasing the constraint on extrinsic growth has the
effect of homogenising high-k vertex degrees. With increasing degree homogenisation, the
probability of a new edge attaching to higher degree countries is reduced, effectively limiting
how ‘preferential’ the attachment mechanism can be. This results in attachment rates becoming
increasingly constrained as λ tends to zero. An interesting dynamic emerges between the
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parameter limits of the model (0.01 < λ < 1), where the resulting network displays a core/pe-
riphery like structure, with the core connected in a uniform fashion, and the periphery connected
preferentially. Alternatively, at the parameter limits of the model, where λ = 1, the resulting
networks are similar to those produced using the Barabási-Albert (B-A) model [15]. Here, all
edges attach extrinsically and the network develops into a scale-free topology, with Ak linear
in k and a power-law like degree distribution. Setting λ = 1, effectively executes the model
code as one would programme an B-A model, so it is no surprise that they would produce the
same outcome. At the other extreme, setting λ ≤ 0.01 suppresses the preferential attachment
mechanism to such a degree that the model produces networks functionally equivalent to a
random network. In simulations, the attachment rates are uniform and the resulting degree
distribution is exponential. This leads to networks similar to the alternate uniform A-B model
outlined above, or to the Erdös-Rényi (E-R) [41] random network model outlined in Chapter
II. The results of our simulations can be seen in figure 4.5 and figure 4.6. The results shown
are calculated by averaging over 1000 realisations of the model with choice of parameter λ .
In addition, a breakdown of the model parameters settings and observed behaviours from the
simulations are shown in Table 6.1.

Table 4.3 Observed Model Dynamics in Simulations.

Parameter Edge Attachment Network Structure Degree Distribution

λ = 0 No Growth – –

λ ≤ 0.01 Uniform Random P(k)∼ e−βk

0.01 < λ < 1 Constrained Core/Periphery P(k)∼ k−γe−βk

λ = 1 Preferential Scale-free P(k)∼ k−γ

Empirical Estimates of Model Parameters

For the model to be of use in predicting future market growth, we first need to derive empir-
ical estimates of the model parameters. To do this, we find the ratio of intrinsic-to-extrinsic
edge-attachment events in each market, for each of the 22 years studied. The distribution of
these ratios gives an estimate of the parameter λ across a wide range observations. The results
are shown in figure 4.7, where we can see a distribution of observed parameter values. The
most notable feature of this distribution is that in most years λ ∼ 0, meaning that in those
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year, edges are only attaching intrinsically between existing vertices. The distribution then
decays very rapidly, with the highest parameter value λ = 0.06. It becomes clear that rate of
extrinsic growth in real world networks fall far short of the ideal set out in the A-B model,
where we would expect the parameter value to be closer to λ = 1. The limiting factor on edge
attachment rates in real-world trade networks is likely due to protectionist tariffs on imports
and large subsides given to leading exporters, both of which create barriers to entry for new
market participants. There is another possibility however, in that the trade networks could
have grown much faster in past, but since plateaued. Unfortunately, the data available does
not cover the full growth cycle of each commodity market, rather a period of time after maturity.

Fig. 4.7 Estimation of model parameter λ from empirical data. Data source: [141].

Model validation

To test whether the constrained growth model can reproduce the growth dynamics of real-
world commodity-trade networks, we compare edge-attachment rates from simulations with
empirically estimated parameter values taken from Figure 4.7, against the historical attachment
rates shown in Figure 4.3 (a). In these simulations, the model is first run for a relatively long
period of time (t1), until the network structure has had a chance to mature. We then record
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the degree k(t1) of each vertex, before running the model again for a further period of time
(t2), but one much shorter than before. After this, we record the number of new edges attached
to those vertices of k degree between periods t1 and t2, i.e., Ak = k(t2)− k(t1). Increasing t1
lets the network grow further—increasing the range of degrees, whereas, the length of time
between t1 and t2 changes the maximum edge attachment rate—but importantly, not the shape
of the distribution. In the empirical data, each period of time is measured in years, whereas, in
the model, time is measured but t-edge attachment events. Therefore, the time between t1 and
t2 needs to be set to match approximately one year of empirical data. We use a two-sample
Kolmogorov-Smirnov (KS) test to see whether the distributions generated by our constrained
growth model can reproduce those recorded in real-world commodity-trade networks1. Similar
to the one-sample test described in Section 4.2.2 the greatest distance Dn,n′ between the model
sample n, and the historical sample n′ can be calculated by

Dn,n′ = sup
x

|F1,n(x)−F2,n′(x)|, (4.11)

where F1,n(x) is the EDF of the model attachment rate, and F2,n′(x) is the EDF of the historical
attachment rate. Using this test we find a distance between the two samples Dn,n′ = 0.19, which
is found to have a moderately statistically significant p-value of 0.07 (where significance is
defined as p > 0.05). The comparison between attachment rates was made by setting λ = 0.06,
t1 = 2000, and t2 = 2500. These results show how the model is able to reproduce empirical
edge attachment rates.

4.4 Conclusion

The main application of our findings is in predicting the future growth of commodity markets,
using the constrained growth model to estimate both size and connectivity. For example, a
Monte Carlo simulation method could be employed to give bounded projections of the future
market structure at set time intervals as required. In the Monte Carlo simulation, the current
market structure of a given commodity market would be used as a seed network from which the
constrained growth model would be run. The model parameter values for each specific market
can be estimated based on past data in a similar manner to the methods used in Section 4.3.3.
Each run of the simulation would then grow the network for a specified period of time. After
running the simulation many times, the statistical properties (degree rankings, degree distribu-
1 The edge attachment rate from the empirical data is averaged over all commodity markets studies, whereas the
model edge attachment rate is averaged over 100 realisations
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tion, total number of vertices etc...) can be averaged across the resulting networks to give a
predicted value.

Using this procedure with the Barabási-Albert (B-A) model results in a 1600% increase
in network size (N vertices) and a 1000% increase in edge density (as defined in Chapter II)
compared to the constrained growth model with empirically estimated parameters. Therefore,
using the B-A model can predict highly differing, and possibly unrealistic results. Future work
could focus on further validating and improving the constrained growth model’s performance
in this area.

Another major implication of our results regards the structural robustness of critical markets,
particularly the agriculture and energy sectors. Robustness here, is defined as a network’s
ability to withstand perturbation1. In a network setting this typically involves the removal
of specific vertices from the network [5]. Vertex removal makes it increasingly difficult for
the remaining vertices to interact with one another, and will eventually leave some vertices
unreachable [4]. Real-world examples of these perturbations include, extreme weather events,
trade restrictions, local conflicts, and piracy. Each of these leads to market fragmentation and
higher prices. In the literature, there are two general categories of perturbations [153];

• Error: Vertices are removed at random, representing environmental factors.

• Attack: Specific vertices are removed, based on their connectivity.

Researchers have compared the robustness of the two network models discussed in Chapter II,
namely, the Barabási-Albert (B-A) preferential attachment model [14], and the Erdös-Rényi
(E-R) random graph model [41]. They find that the scale-free networks produced by the B-A
model display an unexpected level of robustness to errors, but are extremely vulnerable to
intentional attacks. On the other hand, random networks are not as robust to error, but are more
resilient to intentional attacks [5, 72, 34]. The response of these models to vertex removal
varies due to the underlying network degree distributions [4]. Fortunately, most real-world
examples of perturbations fall in to the error category. While some events, such as embargoes
and blockades are ‘targeted’ in a sense, as they are aimed at specific countries, they are not
targeting the network based on connectivity (this tactic might be a possibility in the future,
however), and so are better modelled as random errors.

1 Defined as a deviation of a system, moving object, or process from its regular or normal state or path, caused by
an outside influence [99].
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As noted above, use of the constrained growth model with empirically estimated parameters
produces network structures that differ significantly from the scale-free networks generated
using the Barabási-Albert (B-A) preferential attachment model. In particular, network degree
distributions are far more homogeneous when using the constrained growth model, which
makes them less likely to be robust to error type perturbations. Future work could be done to
quantify the difference in robustness between the constrained growth model and it’s alternatives.
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Chapter 5

Price Variation in Network Models of
Commodity-Trade.

5.1 Introduction

International trade is a major source of income for many developing countries and plays an
essential role in global economic development [139]. However, restrictions on trade introduce
asymmetries in the economic interactions between consumers in global markets [126]. These
asymmetries can lead to varying prices for the same goods simply due to the network struc-
ture [86]. While having to pay higher prices is detrimental for low-income consumers, low
prices can prove challenging for producers as well. In this chapter, we apply a network model
of commodity markets to measure the effect of the network structure on price asymmetries. A
simple economic model is used, whereby standard price formation factors are specified so that
any variation in commodity prices can be ascribed solely to variation in the underlying network
structure. Using this model we find that exporters are able to secure favourable prices simply
due to their position in the network. We also look at how global prices vary between networks
with different topological properties. Our findings combine theoretical analysis, modelling,
and applications to real-world trade data, the results of which are interpreted in terms of both
economic theory and international trade policy.

The chapter is structured as follows: In section 5.2, we give some background on the
standard economic model from which much of the literature is based. In section 5.3, we
introduce the graphical exchange model developed by Kakade et al. [86]. Following the model
outline, we investigate the determinants of local price variation in network-like markets in
section 5.4. In the results section 6.6, we present the output of the model, first in terms of
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determining the theoretical upper and lower bounds of price variation (section 5.5.1), and
second, we apply the model to empirical datasets representing real-world commodity markets
(section 5.5.2). Section 6.8 concludes with an overview of the study.

5.1.1 Background

As noted in the introduction chapter to this thesis (Chapter I), economists have a long history
of developing mathematical models of markets and trade. However, generally speaking, these
models do not explicitly consider the network-like structure of markets. This is largely due to
the simplifying assumption of ‘perfect’ competition, that was introduced in the nascent years of
economic modelling (the Fisher [53] model of competitive markets was introduced in 1926, for
example). Perfect competition is a theoretical market structure, defined by several conditions
that have proven highly controversial in the development of general equilibrium theory [9].
The relevant assumption to this discussion, is that under perfect competition, no restrictions can
be placed on trade1. This condition excludes the possibility of consumers extracting economic
rents (i.e., unearned revenue) due to monopolistic, or monopoly-esque situations. As such, in
a perfectly competitive market, prices are formed based on the aggregate balance of supply
and demand across that whole market. In this case, it is often said that prices are formed
‘globally’, and that there exists a global price for the good. Real-world markets differ from this
model in many ways, but most relevant to the network perspective, is that markets are typically
characterised by restricted trade, rather than perfect competition [9]. Restricted trade can be
due to the lack of a negotiated free-trade agreement between nations, or a unilateral government
policy placing restrictions on imports/exports. Alternatively, these restrictions could be due
to physical causes, such as natural disasters, or limited shipping routes. Restrictions on trade
introduce asymmetries into the market’s structure, meaning that some consumers have limited
options with who to trade, and giving others a monopolistic-esque advantage—through which
they can extract higher prices. This structural asymmetry ultimately leads to variations in price
(or prices) between consumers and across the market as a whole. The concept of a ‘global’
price or global price formation, is thus replaced by local prices, determined, in part, by each
consumer’s position in the market structure.

The distinction between a ‘perfect’ and restricted market can be made clearer by looking at
the situation from a graphical perspective. By modelling a market as a network, representing
each consumer as a ‘vertex’ or node, we can draw an edge between two consumers where trade
1 The other conditions being: large n consumers, perfect information, homogeneous goods, and no price mak-
ers [9].
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is permitted. Then, where no edge exists, we know where trade is restricted. Like most trade
network models (see Chapter III for examples), these networks are typically used to represent
a global market, where each vertex represents a nation, and each edge represents bilateral
trade between nation pairs. But the network could just as easily represent a social network
of individual businesses, with edges representing existing business relationships between
clients [85]. In figure 5.1, we draw two graphical representations of a simple market model
where consumers can act as both buyers and sellers. The first panel (a), represents a perfect
competitive market under free-trade, and the second panel (b), represents a market subject to
restrictions on trade.

(a) Perfect Market (b) Restricted Market

Fig. 5.1 (a) A graphical representation of a ‘perfect’ competitive market consisting of n = 16
consumers. (b) The same n = 16 consumer market subjected to trade restrictions.

Even from this simple representation, we can derive several important structural differences
between the two markets. First, from a network perspective the perfectly competitive market in
figure 5.1(a) would be considered a complete graph, (often written as Kn, in this case n = 16),
in the sense that every pair of vertices is connected by an edge. As a consequence, we can also
state that the perfect market is a regular graph, such that each vertex has the same number
of neighbours, i.e., each vertex degree k = n− 1. On the other hand, the restricted market1

shown in figure 5.1(b) is sparse of edges between consumers, and displays heterogeneity in
terms of the number of neighbours connected to each consumer (see Chapter IV for methods

1 The network displayed in figure 5.1(b) was drawn from a random graph model [66], where every pair of vertices
is connected by a edge with a probability 0 < p < 1.
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of measuring degree heterogeneity). The result is a wide range of vertex degrees, between
1 < k < n−11.

To begin to understand how these differences in market structure affect price formation,
we need an economic model of consumer behaviour to apply onto the network model. While
the field of network science is largely focused on developing models that are purely structural
(see Chapter III for examples), one model called the graphical exchange model combines both
network effects with economic logic of buyers and sellers in a market. Developed over a series
of papers by Kakade et al. [see 85, 86, 84, 132], the graphical exchange model sets all standard
economic factors; endowments, utilities, and so on, to be, both uniform and symmetrical
across all consumers. This design, ensures that any resulting price variation at equilibrium,
can be ascribed solely to the underlying structure of the market under study [132]. As a
result, consumers may have to pay dramatically different prices for the same commodity, based
solely on their privileged position in the network. This chapter focuses on understanding how
specifically, the topology of a network affects the outcome of trade using this model. In the
next section we give some background on a standard economic model that is used throughout
the literature, and from which, the graphical exchange model is based.

5.2 The Classical Fisher Market Model

In this section we briefly explain the classical Fisher market model [53], from which the
graphical exchange model [132] is a specialised derivation. The Fisher model describes a
competitive commodity market in which there are m buyers of n goods2. The aim of each
buyer is purchase g j units of each good j at a a price p j, that maximises the buyer’s utility ui.
Each buyer i is given a cash endowment ei from which to make these purchases. The main
assumption3 of the model is that the utility function of each buyer is linear in the amount of
goods purchased [84], i.e., the more of the good j, buyer i can obtain, the more utility (or
‘value’) they will gain from the purchase. If ui j denotes the utility derived by i on obtaining a
single unit of good j, and buyer i purchases xi j amount of good j, then the utility i derives is
given by,

∑
j

ui jxi j. (5.1)

1 A consumer with k = 0 is not able to trade with anyone, and is therefore not considered part of the market.
2 The goods are being sold by a number of sellers presumably, but they are not explicitly named in the model [53].
3 Along with other standard economic modelling assumptions: strictly monotone/weakly convex preferences, a
constant marginal rate of substitution, and perfectly substitutable goods. For details, see [59].
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In this market, a set of prices p = {p1, p2, . . . , p j} will reach equilibrium if the following two
conditions hold:

• The market clears (all goods are sold), so that supply equals demand, i.e., ∑i xi j = g j ∀ j.

• The total cost of the goods purchased by each buyer i is not more that the buyer’s cash
endowment i.e., xi j ·p ≤ ei ∀ j.

Given these assumptions, Arrow-Debreu [8] proved that an equilibrium will always exists for
some set of prices p if each good j has a buyer which derives non-zero utility for that good, i.e.,
ui j > 0 for some i. The problem has been formulated more formally [see 37] as follows,

maximise
m

∑
i=1

ei logui

subject to ui =
n

∑
j=1

ui jxi j ≤ 1 ∀i

m

∑
i=1

xi j ≤ 1 ∀ j

xi j ≥ 0 ∀i,∀ j.

(5.2)

Note, that the existence of equilibria does not mean that equilibrium is always achieved. A
mechanism is required to reach convergence, such as auctioning or bargaining for example [9].
The idea suggested in Fisher [53], is a Walrasian-esque (after Léon Walras) “tatonnment”
process, where each buyer submits a list of purchases xi j, for every possible price p j of each
good j. A third-party then calculates which price p j will satisfice the total demand across all
buyers. Clearly, this is not a particularly realistic mechanism, given that there is no known
market that works in this manner, but it is at least believable, in the sense that all the information
required to calculate equilibrium prices (the buyers own utility ui j and endowment ei) are known
to the people making the decisions. The actual calculation of prices in a Fisher market model
has proven difficult due its computational complexity, and is still an active area of research [9].

The important takeaway from this model is that the market has no effect on wealth across
the market. That is to say, each buyer starts with endowment ei and ends with ei’s worth of a
selection of j goods, depending on their preferences. In this way, the process can be thought
of as a kind of matching algorithm, matching interested buyers to sellers. What is not shown
in the model is that this is a function of the market’s structure. The hidden assumption in the
Fisher model is that it is operating in a perfectly competitive market, like the example shown in
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figure 5.1(a). What is not known, is how does relaxing this assumption, and running the model
on a restricted market, affect both the distribution of wealth and prices.

In the next section, we introduce the graphical exchange model, a specialisation of the
classical Fisher model1 [53], that was recently developed in a series of papers by Kakade et

al. [see 85, 86, 84, 132]. The authors note that from an economics point of view, the graphical
exchange model offers no advancement over the Fisher model, but does allow for the underlying
structure of the market to influence the properties of equilibrium prices [84]. As such, this
model is key to allowing us to answer the research question posed above.

5.3 A Graphical Exchange Model of Trade

In this section we introduce the graphical exchange model [following 84, 132]. The model
describes a competitive market, consisting of n consumers, divided into an equal number of
i buyers and j sellers. For the sake of simplicity, the number of goods sold in this market is
limited to one, herein called wheat (without loss of generalisation to other commodities) and
that all wheat sold is homogeneous, infinitely divisible, and perfectly substitutable2. The aim
of each buyer is to purchase g j units of wheat from any seller (or from several sellers), that
maximises the buyer’s utility ui. Each buyer i is given a cash endowment ei from which to make
these purchases. The same linear utility assumption from the Fisher model applies, in that the
more wheat buyer i can obtain, the more utility (or ‘value’) they will gain from the purchase.
In this market, a set of prices p = {p1, p2, . . . , p j} will reach equilibrium if the following two
assumptions hold:

• The market clears (all wheat is sold), so that supply equals demand.

• The total cost of the wheat purchased by each buyer i is not more that the buyer’s cash
endowment.

Given these assumptions an equilibrium will always exists for some set of prices [84]. Where
the graphical exchange model diverges from the Fisher model, is that each seller j is explicitly
named and is given an endowment g j units of wheat to be sold at a locally determined price p j.
That is to say, the model permits and realises prices that can diverge between sellers. These
price differences for identical goods are assumed to arise due to the network structure of the
underlying economic interactions [85].
1 Graphical Arrow-Debreu models have also been developed [see 86].
2 Note that these are standard simplifying assumptions in many economic models.
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5.3.1 Representing the market as a network

In a network setting, we can represent the market as a directed bipartite graph, G = (U,V,E),
comprising two sets of vertices, U consisting of {1,2, . . . , j} sellers, and V consisting of
{1,2, . . . , i} buyers, as well as a set of edges E connecting buyers to sellers across sets. Each
edge between buyer i and seller j denotes where free trade is allowed between the two parties,
while the absence of an edge denotes a restriction on trade. Naturally then, buyers are only
allowed to purchase wheat from a seller with whom they are connected, and vice versa. We
can record trade restrictions in the graph’s adjacency matrix A, whose elements ai j = 1 where
trade is permitted and ai j = 0 where trade is not. In a bipartite system, trade is not possible
with others in the same set (i.e., buyers to buyers), so that all permitted edges in E are between
sets U and V .

1

j

1

i

U V

a11

a
i1

ai j

Fig. 5.2 The bipartite graph G = (U,V,E), where U is a set of nodes representing sellers and V
is a set representing buyers. Edges from U to V exists if and only if trade is permitted, where
ai j = 1. Note that the edge between buyer 1 and seller j is not present so a1 j = 0.

Given the network market model outlined above, we want to be able calculate the set of
prices p that clears the market, both locally and globally, such that, all wheat is sold, and all
cash endowments are used both at the individual level and across the market as a whole. In
the classic Fisher model, assuming only one good, we could simply define a total demand
vector as d = ∑i xi, where xi is the total amount of wheat purchased by buyer i, and a total
supply vector as g = ∑ j g j. Thus, the market clears if d = g. If the graphical exchange model
is run on a complete network (where every pair of vertices is connected by a edge), then these
notations for market equilibria would suffice. However, if the graph constrains trade between
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individual buyers and sellers, the assumptions of the Fisher model do not hold [85]. With this
in mind, Kakade et al. [85] developed the notion of local market clearance, in which equilibria
is achieved if and only if all wheat is sold within the neighbourhood of each seller1. Here,
the local demand vector is defined as d j = ∑i∈U( j) xi j, so that the local clearance condition for
each j becomes d j = g j. The market clears globally when d j = g j holds for ∀ j. Kakade et

al. [85] argue that this notion of local clearance more clearly expresses the economic logic
of each seller in the network, compared to the global approach of the Fisher model. For
example, the United States government is very much interested in balancing the production of
American goods with the current (and predicted) worldwide demand for those goods, whereas
the balancing of worldwide production and worldwide demand would only be considered in
terms of its secondary effects on American interests.

5.3.2 Calculating equilibrium prices using max-flow/min-cut theorem

To calculate the local supply and demand for wheat, we employ the max-flow/min-cut theorem to
calculate the ‘flow’ of wheat across the network [30]. The idea, is that the flow of wheat through
the system is constrained, first by the network structure, but also by the limited ‘capacities’ c of
each consumer to either supply or demand. Supply here, is driven by prices, so that where there
are higher prices, sellers will want to supply more of the good. In theory, demand is infinitely
elastic, which is to say the quantity of wheat purchased would increase without limit as prices
tend to zero. However, in practice, demand is limited by the total cash endowment of all buyers
in the market. To induce the flow across the graph, a ‘source’ vertex s and a ‘sink’ vertex t

are added to the network to create a flow-graph F (these are engineering metaphors). The
maximum flow | f | of the flow-graph tells us how much wheat can flow from the source—to the
sink without exceeding the capacities of any of the consumers involved [30]. A way of solving
this problem is to find the bottleneck in the network’s structure that is constricting the flow
of wheat. A bottleneck is typically identified by a ‘cut’ or partition of the network, that will
split the flow-graph into two disjointed sets of vertices (P, P̄), denoted by a list of edges that
would need to be removed in order to split the flow-graph into P and P̄ [30]. The minimum
cut of the flow-graph is where the flow along edges between P and P̄ are at their maximum
capacity, and is denoted by c(P, P̄). The max-flow/min-cut theorem states that the maximum
flow | f |, between the source vertex s and the sink vertex t is equal to the sum capacities of
the minimum cut c(P, P̄) [30]. This is important, as in complex cases there could be multiple

1 Neighbourhood being defined here as a sub-graph of the network consisting of all vertices adjacent to a given
vertex.
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different flow configurations, and going through them one by one to find the maximum flow
can be prohibitive in terms of the time complexity of the problem [85].
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0 0 6 3
0 0 3 1
0 0 0 0
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Fig. 5.3 (Left) A simple bipartite trade network, with sellers a and b trading with buyers c and
d subject to constraints. (Right) the corresponding weighted adjacency matrix W, where the
element wi j indicates the capacity of the edge from i to j.
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Fig. 5.4 A flow-graph of the example network shown in Figure 5.3 above. Note the source
vertex s is attached to a and b with an asking price of 5, and vertices x and y are attached to the
sink vertex t, each with an endowment of 6.

In our exchange model (see Appendix B1, Listing B.1) the max-flow and min-cut are
calculated using the graphmaxflow function in Matlab’s bioinformatics toolbox [98], which is
an implementation of the Goldberg “preflow-push” algorithm [69]. To illustrate this method
with an example, we work through a typical max-flow problem below. In figure 5.3 (left),
we create a simple bipartite trade network, with two sellers, a and b, and two buyers x and
y. Buyers can trade with each seller, but not with each other, and vice versa. Imagine that
these trade relationships are subject to some constraints, indicated by the edge weights in the
adjacency matrix (see figure 5.3 (right)). To compute the maximum flow across this graph, we
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first need to build an augmented flow graph of the market. In figure 5.4, we add a source vertex
s, which is attached to sellers a and b with an asking price of 5. Buyers x and y are each given
an endowment of 6 units of cash with which to make their purchases, and attached to a new
sink vertex t. If we assume a and b both have one unit of a good to sell, the buyers have more
than enough cash to purchase all goods with money left over (the total cost of goods offered
is (1× 5)+ (1× 5) = 10, and the total cash endowment is 6+ 6 = 12). However, the trade
of goods in this network is limited by a set of constraints between buyers and sellers. These
constraints are represented by the maximum capacity c of each edge, denoted in figure 5.4 by
the edge labels in red. So for example, we can say the edge between vertices a and x, (a,x)
has a maximum capacity c(a,x) = 6. In figure 5.5, we induce the flow through the flow-graph
given these constraints. Now, the second label in blue denotes the current flow f being pushed
through the network. We can see that while the maximum capacity of (a,x), c(a,x) = 6, the
flow is only f (a,x) = 3. In this example, the maximum flow of the network can be found from
the sum of the current flow to the sink vertex t, from vertices x and y, where f (x, t) = 6 and
f (y, t) = 3, giving a maximum flow | f |= 6+3 = 9. The min-cut of the flow-graph divides the
network along the edges (s,a),(b,x) and (b,y) so that P = {s,b} and P̄ = {a,x,y, t}. Note that
true to the max-flow/min-cut theorem, the capacity c of the edges between P and P̄ also sum to
equal the maximum flow of the network c(P, P̄) = 5+3+1 = 9 = | f |.
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Fig. 5.5 An example max-flow problem. The edge label in red denotes an edge’s capacity c, the
edge label in blue denotes the current flow f . The set P = {s,b} (outlined in red) is the min-cut
of the graph.
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5.3.3 Application to the graphical exchange model

To apply the max-flow/min-cut theorem to the graphical exchange model, we first need to
build an augmented flow graph of the market. Following [86], we create a flow-graph from the
network G = (U,V,E), shown in figure 5.2, as follows; we first assign a capacity of infinity to
all the edges from U to V in G. That is to say there is unlimited free-trade permitted between
any pair of consumers that are connected by an edge. Next, a source vertex s is introduced and
connected by directed edges from s, to each seller j ∈U , with a capacity of p j representing the
asking price at each vertex. On the other side of the graph, a sink vertex t is introduced and
also connected by directed edges from each buyer i ∈V to t with a capacity of ei representing
the buyer’s cash endowment. This makes sure that each buyer cannot spend more money than
is available to them. The resulting flow-graph, shown in figure 5.6, is a function of the current
set of prices p and can be denoted as F(p).
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Fig. 5.6 An augmented flow-graph of the graphical exchange model, shown in Figure 5.2.

This augmented flow-graph is used to find a set of prices p, that will clear the market
both locally and globally. We use the max-flow/min-cut method outlined above as one part
of a primal-dual algorithm, in a similar fashion to the market equilibrium algorithm proposed
by Devanur et al. [37]. The idea here, is to start raising prices across the flow-graph until a
subset of sellers R ∈U , and neighbouring buyers N(R) ∈V , find a price that leads to a local

optimal set of trades. We can determine when a set of trade become optimal, as the min-cut
will shift to be around both the source vertex s and the optimal subset (R,N(R)). We then
freeze any subset of optimal trades (R,N(R)) and only raises prices in the remaining active
sub-graph (U −R,V −N(R)). This is to ensure what Devanur et al. [37] call the ‘invariant
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condition’—that the min-cut must always include the source vertex, such that (s,U ∪V ∪ t),
meaning all goods can be sold at current prices p. This process continues, finding and freezing
more subsets in F(p) as prices keep rising. To ensure that a min-cut can always be found, we
first set prices p = 1/max(k j), where k j is the degree of each j seller. Prices are then raised
systematically by multiplying p by x = 1, then x = 1.1, x = 1.2 and so on. We clear the market
globally by running the algorithm until all subsets of buyers and sellers have found a locally
optimal trade. This will be equivalent to the condition that the min-cut is now around the sink
vertex, i.e., (s∪U ∪V, t).

5.4 The Determinants of Local Price Variation

Now that we have a method of finding equilibrium prices using the graphical exchange model,
we want to look into the determinants of price variation in networked markets at a local level.
In particular, we are interested in whether specific buyers or sellers are able to command
favourable prices due to their position in the network. For example, microeconomic theory tells
us that in a given situation where demand is greater than supply, a shortage occurs, leading to a
higher equilibrium price [20]. We might presume, therefore, that a seller with many interested
trade partners (i.e., with a high degree k) will be able to command a high price for their goods.

j

2

1

0.5 wheat1 cash

0.5 wheat

1 cash

j 2

1

3
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0.33 wheat

1 cash

0.33 wheat1 cash

Fig. 5.7 (Left) the local neighbourhood of seller j, N( j) with two interested buyers. At
equilibrium seller j trades 0.5 units of wheat to each interested buyer in exchange for 1 unit of
cash each. The market clearing price is 2 units of cash per unit of wheat sold. (Right) the local
neighbourhood of seller j with three interested buyers. At equilibrium seller j trades 0.33 units
of wheat to each interested buyer, again for 1 unit of cash each. The market clearing price in
this case is 3 units of cash per unit of wheat sold.
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To illustrate this point, we consider only the local neighbourhood N( j) of seller j (i.e.,
the seller and its trade partners) in figure 5.7. First, where j has two interested buyers, and
second with three. Recall that in the graphical market model each seller is endowed with only 1
(divisible) unit of wheat and each buyer is endowed with 1 unit of cash. Ideally, each buyer
would like to trade their endowment for as much wheat as possible. However, there is too little
wheat on offer to satisfy all demand. As such, the interested buyers will have to compete by
offering increasingly more cash per unit of wheat, until j has sold all of their wheat endowment.
In the first case, at equilibrium, seller j would trade half of their endowment to buyer 1 and half
to buyer 2. The resulting price (expressed as a unit/price ratio) would be 2 units of cash per
unit of wheat sold (herein we express prices simply in terms of a dollar value, so a $2 wheat
price is equivalent to trading 2 units of cash per unit of wheat). In the latter case, we see that
seller j would trade 1/3rd of their wheat to each interested buyer, at a price of $3 per unit. We
can see from this example that, within a seller’s local neighbourhood, the maximum price they
can charge is bounded by the number of interested buyers. More generally, if the graph G

consists of only the immediate neighbourhood of seller j (that is j and its k buyers), then the
equilibrium price in G is equal to the degree k, since all buyers are forced to buy from seller j

[86].

While it is understood that prices in the graphical economy model are bounded above by
the seller degree k (which is the most basic measure of local network structure), Kakade et al.
[86] find that k, is in fact, a poor predictor of individual seller price. This is because sellers
face competition, and competition drives down prices. Graphically, we can measure local
competition using the average nearest neighbours degree knn, which takes the average degree of
the k importers in the neighbourhood of seller j. In this setting, larger values of knn indicate that
seller j is competing with many other sellers in the market. We can represent the varying levels
of competition knn, and seller degree k, in the local market structure using idealised examples
from microeconomics. Following Fernandez et al. [51], we display these recurrent structures
in figure 5.8 using graphical representations, often referred to as network motifs.

The first network motif in figure 5.8(a) shows a localised monopoly, where the highly
connected seller j is the sole supplier to many interested buyers. Since, all buyers in j’s
neighbourhood are dependent on j for their supply, they have no option than to pay full price.
In the graphical exchange model, the resulting equilibrium price in market structured as this
motif would be $5 (see table 5.1). The monopsony motif in figure 5.8(c), is simply the opposite
of a monopoly. Here, many sellers are competing with each other to trade with a single
buyer. The extreme competition in this structure drives down prices, such that a seller can only
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One Exporter

Many Importers

(a) Monopoly

Many Importers

Few Exporters

(b) Oligopoly
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(c) Monopsony

Many Exporters

Few Importers

(d) Oligopsony

Many Exporters

Many Importers

(e) Competitive

Fig. 5.8 Local network motifs developed by Fernandez et al. [51]. See text for description.
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command $0.2. The prices in the monopsony network motif are 25 times less than the price
sellers can charge in a monopolistic market. Given the network structure of these motifs, we
can assume that any observations of highly connected buyers or sellers in market data may
indicate the presence of either a monopoly or monopsony.

The oligopoly network motif shown in figure 5.8(b), is where there is more than one seller,
but few compared to the number of buyers. Since the market comprises more than one seller, an
element of competition is introduced. We can see from our example that the sellers each have
the same degree k = 5, as in the monopolistic example, however, now that there are two sellers,
the average nearest neighbours degree knn = 2. This small amount of competition halves the
price these sellers can command in the graphical economy model. Again, the oligopsony motif
shown in figure 5.8(d) is simply the opposite of an oligopoly. Here, the low number of buyers in
relation to sellers drives down prices markedly. Finally we have a competitive network motif in
figure 5.8(e), where there is an equal number of buyers and sellers. As such, each seller in this
market has the same degree k and average nearest neighbours degree knn. In effect, the network
structure in this configuration has no influence on prices in the graphical economy model. In
microeconomic theory, a perfectly competitive market is an ideal case where neither buyers or
sellers have power to influence price over the rest or the market [51]. Rather, aggregate market
supply and demand determines prices.

From the values in table 5.1 below we can clearly see that k is not the sole determinant of
prices, given that the first three motifs (Monopoly, Oligopoly, and Competitive) have the same
degree but prices ranging from $5 to $1. Rather, in these idealised examples, it is the ratio of k

to knn that determines prices. Unfortunately, real-world markets are rarely organised in this way.
For example, whilst seller j could form a monopolistic subgraph in relation to the majority
of its neighbours N( j), some connected buyer i ∈ N( j) may also be connected to a largely
competitive subgraph in a different part of the market. The competition in the highly connected
subgraph could therefore, indirectly influence prices in the adjacent monopolistic subgraph,
with i operating as of form of arbitrage agent. As such, we cannot determine the exact price
commanded by a seller, based on knowing only k and knn. However, we can determine the
upper and lower bounds these values may take. This is achieved by measuring both seller
degree as a function of price k(p) and the average nearest neighbours degree as a function of
prices knn(p), for all values of k and knn.
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Table 5.1 Local network characteristic of varying market structures. Values denote: exporter
degree k, average nearest neighbour degree knn, and local equilibrium price p determined by
the graphical exchange model.

Local Market Structure k knn p

Monopoly 5 1 $5.0
Oligopoly 5 2 $2.5
Competitive 5 5 $1.0
Oligopsony 2 5 $0.4
Monopsony 1 5 $0.2

5.5 Main Results

5.5.1 Theoretical Bounds on Price Variation

To test these theories on larger scale networks, we take a numerical approach to determining
the theoretical upper and lower bounds of price variation across a market. A set of bipartite
graphs were generated in which every seller has the same degree k and the same average nearest
neighbour degree knn. Measurements of equilibrium prices were then taken for all values of
k and knn. Given that prices in these theoretical markets are only relatable to each other, the
observed price variation p, measured as a percentage change from $1 (i.e., the value expected
in a complete/competitive market), has been normalised on a scale of −1 to 1. So that where
p = 1, prices are 100 times greater than in a competitive market and where p =−1, they are
100 times less.. Note that the values for the degree k and the average nearest neighbour degree
knn, are derived from the adjacency matrix of a graph G, i.e., the original network representing
the ability of buyers and sellers to trade, rather than the flow-graph F(p), which has been
augmented with the addition of sink and source vertices. This is to ensure that the effect on
price variation is determined by the restrictions on trade—which are encoded in G.

The upper plot in figure 5.9 shows that our results are in line with the theory that put forward
by Kakade et al. [86], that the upper bound (pmax) of the variation in prices expected by a seller
is determined solely by the seller’s degree k.. Note that the large gaps in the top half of the
plot is caused by the gradients of k and knn. We can also see that the lower bound (pmin) is
determined by k/n, where n is the number of sellers in the market. This value represents the
price seller j would expect if they had to compete with every other seller in the market. At the
lower bound, where k = n, the price variation p = 0 as the graph is complete and functionally
equivalent to the classical Fisher market model. That is to say there is effectively no network
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Fig. 5.9 (Above) variation in prices p as a function of degree k. (Below) price variation as a
function of the average nearest neighbour degree knn.
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structure to affect prices. As such, we can say that increasing a seller’s degree k (i.e., their
access to markets) monotonically increases their prospects of obtaining better prices.

The lower plot in figure 5.9 shows price variation as a function of the average nearest
neighbour degree knn. We can see that prices are bounded above in a power-law fashion, where
p = n× knn

−1. We can interpret knn as the amount of competition each seller faces for each
trade. Where knn = 1 and k = n, a seller has a complete monopoly over trade, such that they
can command 100 times greater prices than in a competitive market. However, as soon as
competition is introduced, such that knn = 2, the upper bound on price variation (pmax) is halved.
Where knn = 3, pmax is cut to one third, and so on. As such, we can say that competition (in the
form of a seller’s second nearest neighbours) rapidly eats into a seller’s ability to command
higher prices. Note that pmin has no lower bound in relation to knn.

In figure 5.10 we plot a heatmap of seller degree k over the average nearest neighbour
degree knn, with the colour denoting the resulting variation in prices p. Unsurprisingly, given
the results in figure 5.9, the distribution of price variation when k is plotted against knn is not
symmetrical between positive and negative changes in price. Starting from along the vertical,
price variation decreases monotonically with degree k until k and knn achieve parity. There is
no price variation along the diagonal as this area represents a locally complete sub-graph of
the market. Below the diagonal, price variation rapidly increase as knn decays. This leaves a
small zone of local monopolistic prices along the horizontal. Given a market structure in which
all value of k and knn are equally likely (i.e., a random graph), the resulting variation in prices
would be somewhat biased towards lower prices. Simulations show an expected mean price
across a random graph 0.22 times less than in a complete market.

5.5.2 Application to Real-World Data

To provide some context to the theoretical results outlined above, we apply the graphical
exchange model to trade data representing the real-world international wheat market. Much
like in the previous chapter (Chapter IV), we use data from the UN Comtrade database [141]
detailing import/export transactions between countries in the year 2015. These data include,
for each pair of countries, the total volume of wheat (measured in current U.S. dollars worth)
trade in each year1. From these data we extract the discrete network structure of the market
using the matlab function shown in Appendix A1, resulting in a n×n adjacency matrix (where
n = 79) much like the bipartite graph outlined in section 5.3.1. So here, the buyers and sellers
1 HS-02 classification system was used to select the product code; 1001 denoting trade in wheat
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Fig. 5.10 Heatmap of price variation, showing exporter degree k against the average nearest
neighbour degree knn.

in the network now represent the importing and exporting countries, and the edges represent
where trade was possible between those countries.

In their analysis of aggregated trade data, Kakade et al. [86] randomly assign roles to
each country, as either a buyer (importer) or a seller (exporter). However, at the individual
commodity level, we would argue that the directed and bipartite nature of this trade network
should be preserved, as it is an important factor in the determinants of price formation. For
instance, the majority of countries that export wheat, do not import significant amounts in
return, and vice versa. As such, the way exporters are connected to importers is different to that
of the importers [52]. More concretely, countries with these different roles have been shown
to have marked differences in terms of their local topological characteristics [52]. Therefore,
we maintain the specific role each country takes in the data, so that the structural asymmetries
presented, are a direct result of the directed-bipartite nature of the network.

Figure 5.11 shows international wheat exporters ranked in descending order. The basis of
these rankings is the local equilibrium price p derived from using the graphical economy model
applied to the UN Comtrade data [141]. Given the specification of the model, prices p are in
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Fig. 5.11 Ranked wheat exporters based on model prices (network data from UN Comtrade
database [141]).
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effect ‘shadow prices’1 as they only take into account the network structure of trade, and not
the overall supply and demand conditions. Model prices are therefore not directly comparable
to real-world market prices.

From the rankings, we can immediately see a high degree of price variation due to the
underlying network structure of the market. Prices across the network range from 0.11 to 5.2.
While the majority of exporters (50/79) can expect p < 1, the top ten can expect p ≥ 2. The
exporters with best market position command prices of 5.2 (USA), 3.9 (France), 3.9 (Russia),
3.8 (Canada), and 3.2 (Germany). We can also see that the distribution of prices is skewed
towards those at the top. The USA in particular stands out, having a 33% higher price than its
next-nearest competitor.

Table 5.2 Top ranked wheat exporters ranked on model prices (network data from [141]). Values
denote: local equilibrium price p determined by the graphical economy model, the total export
value (in US$), and the total export volume (in Millions of metric tonnes).

Top Ranked Wheat Exporters

Country Model Rank Model Price Export Value (US$) Export Weight (Mmt)

USA 1 5.17 304 (1) 252 (1)
France 2 3.88 182 (3) 159 (2)
Russia 3 3.86 3 (17) 3 (16)
Canada 4 3.80 197 (2) 983 (3)
Germany 5 3.27 59 (5) 43 (5)
Australia 6 3.14 1.8 (22) 2.4 (18)
India 7 2.47 0.3 (30) 0.3 (29)
UAE 8 2.20 0.09 (51) 0.04 (47)
Ukraine 9 2.17 0.15 (24) 0.15 (23)
Italy 10 2.01 3 (18) 1.7 (22)

In table 5.2, we compare this price ranking to real-world export values and volumes, again
taken from the UN Comtrade database. The figure in parenthesis next to each value is the
ranking of that exporter based on either the total value (in US$) or the total volume (in Millions
of metric tonnes) of wheat traded. We can see that four of the top five exporters follow similar
rankings to the model prices, with Argentina being the missing exporter from this list (ranked
4th by both value and volume). However, Russia performs far better in the model than in the
other rankings. We can also see that, as with the model prices, the U.S. outperforms all other
countries in both the value and volume of wheat exported.
1 Shadow prices are values assigned to unknowable or difficult to calculate costs [39].
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Although somewhat counter-intuitive, we should not necessarily expect model prices to
correlate with these rankings. First, the model specification rules out externalities, such as
government interventions, that might affect export values and weights. This allows for a
measure of exporter performance based solely on network position, but naturally, limits the
scope of the model to capture all real-world eventualities. Second, while the export value
and export weight can be considered a measure of exporter performance, they measure each
exporter against the global market. The model prices, on the other hand, can be considered a
measure of how well a country performs within its own local neighbourhood. That is to say,
some of these exporters do not necessarily compete directly with one another. Thus comparing
all exporters globally might not accurately reflect their model ranking. For example, Russia,
and Ukraine, along with Kazakhstan to a lesser extent (Model Rank 19), dominate exports
from the Black Sea ports. Countries in Central Asia, that are dependant on ‘Black Sea’ wheat,
generally do not trade with the U.S. or Europe due to increased shipping costs [38]. As such,
within the Black Sea market area, Russia and Ukraine command a highly privileged position.
However, this local market is relatively small compared to global trade, which explains Russia
and Ukraine’s low global trade rank.

Moving away from looking at specific exporters, we want to know how model prices
compare to other network measures. Shown in figure 5.12, we calculate the model price as a
cumulative distribution function (CDF) using the wheat export market data. This shows the
fraction of the exporters that command prices greater than or equal to price p. We can see
that on lin-log axis the cumulative price distribution decays in a fairly linear fashion, perhaps
indicating an exponential distribution. Interestingly, the CDF of the degree distribution (see
Chapter IV for details of how to draw degree distributions) follows a similar exponential trend.
Note that this is only using data from a single year (2015), so it is not conclusive enough to
draw any connection between the distributions. However, these results do fit with observations
made by Kakade et al. [86], who found that the price distribution of several simulated networks
closely resembled the degree distributions of the networks from which they were derived.

We might expect, therefore, that the export price commanded by an exporter would correlate
to that specific exporter’s degree. We look at this relationship more closely in figure 5.13 (left),
where we plot each exporter’s local equilibrium price p and a function of exporter degree k. We
see that whilst there is generally a monotonic relationship for high values of k, this relationship
breaks down at smaller degree values where there can be significant price variation across
similar degree exporters. It is likely that there is some agreement between model prices and
exporter degree for high values of k, because there is a limit on global competition. Recall that
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the local equilibrium price is also a function of an exporter’s nearest neighbour’s degrees (i.e.,
their closest competition). While there are 79 exporters in the international wheat market, only
∼ 30 trade on a truly global scale. The others, as we have seen with Russia and Ukraine are
somewhat limited to local areas of the market. This places a firm limit to the level of global
competition countries like the U.S., Canada, and E.U. states face across the market. Those
countries that can trade with more than this number (i.e., those exporters with k > 30), can
extract a price premium based on their commanding position. Hence, the increasing correlation
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between prices and degree in the upper left section of figure 5.13 (left). The plot in figure 5.13
(right) shows the average nearest neighbour degree for exporters that command prices p.
We see no discernible relationship between these two variables. However, we can see that
the highest average nearest neighbour degree is knn = 32, which again highlights the limited
competition for very high degree exporters.

We have seen that exporters can expect different prices across the network. However, we
want to measure this global variation in prices more formally. If the price distribution (see
figure 5.12) were normally distributed we could just use the standard deviation, but with the
non-normal distribution of prices, the so-called ‘Gini coefficient’ measure is more suitable. The
Gini coefficient was popularised as a measure of income inequality in the fields of economics
and international development. However, inequality can be calculated for any distribution—not
just for income. For example the global inequality between nation states has been estimated
using the Gini coefficient on measures of GDP (Gross Domestic Product). The Gini coefficent
gives a measurement between 0 and 1, with 0 representing perfect equality and 1 representing
perfect inequality (e.g., all GDP is concentrated in a single country, while all others have none).
However, in practice, these extreme values will never be reached [31]. In the context of a
networked market, we interpret the Gini coefficient as a measure of price inequality, which is
equivalent to the price difference between all pairs of exporters in the market. We could also
interpret the Gini coefficient as a measure of wealth inequality, where wealth would refer to the
amount of cash each exporter would make after the market clears at equilibrium prices. Recall
however, that an exporter is only given 1 unit g j of wheat to sell, so the end wealth of each
exporter, after equilibrium is reached, is equal to the local price p j (i.e., wealth w j = g j · p j,
where g j = 1 ∀ j). Therefore, these two interpretations are functionally the same. More
specifically, if pi is the local equilibrium price of exporter i, and there are n exporters in the
market, then the Gini coefficient for price inequality is given by,

gini coef. =

n
∑

i=1

n
∑
j=1

∣∣pi − p j
∣∣

2
n
∑

i=1

n
∑
j=1

p j

. (5.3)

We can see the Gini coefficient is equivalent to the mean absolute difference between all pairs
of exporter prices in the market, divided by half, and then normalised to a scale between [0,1].

Using our model, we calculate the Gini coefficient for the international wheat market as
0.41, which is relatively low (i.e., prices are more equal). For reference the Gini coefficient for
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Fig. 5.14 (Left) The average Gini coefficient of synthetic markets generated using the con-
strained growth algorithm with varying values for the growth parameter λ . (Right) The average
range in model prices as a function the growth parameter λ .

the world GDP has been estimated to be between 0.61 and 0.68 [31]. By itself this value is not
going to tell us much about how the network structure of a market affects the inequality between
exporters. So to shed light on this issue, we simulate several synthetic markets using the network
growth algorithm developed in Chapter IV. Recall that the model parameter of this algorithm,
λ , denotes the probability of adding a new vertex to the network each time period, with time
here referring to the number of edge-attachment events. We apply the graphical exchange
model over the network structures generated by the algorithm to derive local equilibrium price
distributions for each market. These distributions are then used to calculate the Gini coefficient
for each market. In figure 5.14 (left) we plot the Gini coefficient from each market as a function
of the model parameter λ , that was used to generate that market. In figure 5.14 (right) we also
plot the range of equilibrium prices (i.e., pmax − pmin) as a function of the parameter λ , so we
can see the effect in terms of real price changes. We can see that across both plots the variation
in prices dramatically increases between 0 < λ < 0.2. After which, both price inequality and
range seem to level off, with only a small increase between 0.2 < λ < 1 in the range of model
prices.

So the question becomes, what structural change is happening to the underlying network
that may be responsible for this increase in price variation? Recall that the main feature of the
network growth algorithm was that lower values of λ (note that here, λ acts as a constraint on
extrinsic network growth), has the effect of homogenising vertex degrees across the network.
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We find that setting λ ≤ 0.1 produces networks broadly equivalent to a random network, in
that edge attachment rates were uniform and the resulting degree distribution was exponential.
Alternatively, setting λ = 1, resulted in networks that were similar to those produced using the
Barabási-Albert (B-A) model [15], such that the network developed into a scale-free topology
with a power-law like degree distribution. Looking again at figure 5.14, we can say that the
structural change across the horizontal that might explain the Gini coefficients, is that the
degree distribution of the networks are becoming more heterogeneous as λ tends to 1. One can
imagine that this heterogeneity between exporter connectivity could naturally lead to situations
where a few exporters, at the high end of the degree distribution, might find themselves in a
privileged position, not only being more connected to the global market, but also facing less
competition from other high degree exporters. It should be noted that we find most real-world
export markets between 0 < λ < 0.06, which would indicate relatively similar market prices.
However, we can see that the Gini coefficient is very sensitive to changes in λ precisely
along the parameter values where these markets lie. Thus, any change in growth rates due
to increasing globalisation, for example, could dramatically increase the inequality between
exporters in these markets.

5.6 Conclusion

In this study, we have built on previous research to show how a country’s export performance
can be influenced by its position in the market’s network structure. We analysed how network
asymmetries between countries in global markets can lead to varying prices for the same good.
We find that increasing an exporters degree (i.e., the number of importers that a country can
trade with) also increases the prospects of obtaining better prices. However, we also find that
increasing competition in the market, measured by the average nearest neighbours degree,
rapidly reduces the maximum price an exporter can command. When measuring prices across
networks, we find that price variation increases as network degree distributions become more
heterogeneous. Testing these theories on real-world trade data reveals that the network structure
of commodity markets places them in a very sensitive position, whereby small changes to the
network’s degree distribution could have large implications for the equality of prices across the
market.
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Chapter 6

The Risk of Export Restrictions to
Globally Traded Food-Commodities

6.1 Introduction

This chapter contributes to a small, but growing literature on how the network structure
of international trade is becoming a crucial element in understanding global food security.
From the work reviewed in Chapter III, we have seen how the global trade in commodities
has created a complex network of interdependent supply chains. This network is especially
important in maintaining the supply of agricultural and food-related commodities. However,
as more countries have become reliant on this network, the more vulnerable it has become to
systemic risks and shocks [48]. Research has shown that export restrictions play a key role
in exacerbating these risks, evidenced by the recent episode of extreme food-price volatility,
commonly referred to as “the global food crisis”. From a network perspective, a country’s
susceptibility to these risks is directly related to its level of integration into the world trade
system’s structure [87]. Here, we develop a network theory approach to analyse the effect of
export restrictions in three major food-commodity markets. The commodities—wheat, rice, and
maize—are used as examples throughout the chapter, as they collectively provide the world’s
population with most of its calorific energy [151]. The network method allows for the extraction
of relevant structural information about the effect of export restrictions on the network as a
whole [122], whilst also identifying the relative importance of specific countries [153]. We use
this analysis to develop a composite risk index that assesses the risk posed by export restrictions
to food-importing countries based on their position in the network. We interpret these risks in
terms of developing a policy of strategic reserves and provide a case study example showing
how the network metrics can be applied to mitigate a country’s food security risk. The chapter
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is structured as follows: in sections 6.2 and 6.3, we give a brief overview of the global food
crisis and present the evidence regarding its origin. We then outline the role export restrictions
played in the crisis in Section 6.4. In Section 6.5, we detail the model and methods used in
this study. The results of our analysis are then presented in Section 6.6, and in Section 6.7, we
develop a case study example to interpret these results when applied to food security.

6.2 Background to the Global Food Crisis

After decades of relative stability, several major food-commodity markets have experienced
persistently volatile prices over the period 2007-2013. The rapid increase in the price of basic
food-commodities and the often violent protests that came in their wake have led academics to
call these events a “global food crisis” [134, 151]. According to FAO (Food and Agriculture
Organization of the United Nations) data [49], world food prices began a persistent upward
drift starting in 2002. By the end of 2006, the food price index shown in figure 6.1 had moved
almost 25% higher than the average price from the previous decade (i.e., 1990–2000). Price
rises then started to accelerate, jumping to 60% by the end of 2007 [150]. Six months later, in
June 2008, the price index peaked at around 76% higher than average. Price changes in the
cereal-only index were even more dramatic, rising 208% above the index average by June 2008
(see figure 6.2). Food commodity prices then plummeted just as fast as they had risen. The
food price index started falling after only two months, ending at 22% of its peak by the end
of 2008. Cereal prices also fell precipitously, ending at 32% of peak prices. The rapid rise
and fall in prices is characteristics of a classic price bubble, with the overshooting of prices
leading to an inevitable violent correction [74]. Since 2008, prices have exhibited an unusual
and sustained volatility, with further price spikes in 2010 and 2013 (see figures 6.1 and 6.2).

The degree to which the food price index jumped in 2008 is all the more striking given that
aggregated price indices tend to smooth out the ups and downs of individual commodity price
changes [151]. In specific markets, prices did not always change synchronously. Wheat and
maize prices rose first, in June and September 2007 respectively. Rice prices did not spike until
later, at the beginning of 2008, but subsequently rose much faster and further. Wheat prices
were also the first to peak in March 2008, at 204% higher than the index’s average. Rice prices
peaked at highs of 378%, in May 2008. While maize prices peaked at around 172%, in June
2008. Despite the rapid falls, wheat prices were still 38% above the index average at the end of
2008. Maize prices were up 50%, and rice prices were still up 160%. The speed of those price
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Fig. 6.1 UN-FAO monthly food price index (1990–2016). The food price index consists of the
average of five food-commodity price indices (Meat, Dairy, Cereals, Oils, Sugar), weighted with
the average export shares of each of the groups in 2002–2004. The index is then deflated using
the World Bank Manufactures Unit Value Index (MUV), and normalised such that 2002–2004
average = 100. Data source: [49].
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Fig. 6.2 UN-FAO monthly cereal price index (1990–2016). The cereal price index is compiled
using an average of 10 different wheat price quotations, 1 maize export quotation and 16 rice
quotations. The quotations are combined by weighting each commodity with its average export
trade share for 2002–2004. The index is then deflated using the World Bank Manufactures Unit
Value Index (MUV), and normalised such that 2002–2004 average = 100. Data source: [49].
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changes was also an important factor in the crisis [74].

The speed of price changes in a given commodity is often referred to as market volatility.
However, there is no single way of measuring volatility, as there is an element of subjectivity
in specifying a price volatility model. The simplest way is to base a measure of volatility on
the standard deviation of an observed random variable, in this case, commodity price changes
between years [112]. Volatility measured in this manner is referred to as annualised historical
volatility [112]. The main problem here, is that most time-series datasets follow a trend (e.g.,
due to rising inflation). If not removed, these trends will be accounted for in the volatility
measure [112]. However, de-trending requires a judgemental trade-off between the attribution
of variability to the trend itself (for example, the rate of inflation) and to variation about the
trend (i.e., the true volatility in prices) [65]. We calculated the values shown in figure 6.3
without de-trending, since the period covered is relatively short, but a reasonable model would
perhaps be 3% year-on-year growth in food and cereal prices indices from the year 2000
onwards. Figure 6.3 (a) shows the market volatility in the UN FAO food price index, and (b) in
the cereals price index, as such, they are re-interpretations of figures 6.1 and 6.2. We can see
that, in terms of volatility, the food price index had a background level of 2-5% variation in
prices each year until 2007, when the level of market volatility increased 3-4 times, topping at
20% in 2008. The cereal index had been far more volatile prior to the crisis than food prices
in general, averaging 5-15% between 1990 and 2006. It also saw higher volatility during the
crisis, with 25% and 30% changes in 2007 and 2008. While, annualised historical volatility
generally follows the price index they track, high volatility in cereal prices in 2010 highlights
where measures of volatility and prices changes can diverge. Here, the price index changed
only 39 points across 2010; however, the absolute change in price (lowest price to highest price
in a given year) in 2010 was almost double that, at 69 points. This translates to an annual
volatility of around 25%.

The impacts of the crisis were especially disruptive for poor consumers, who spend a large
share of their income on basic food-commodities [1]. Such large price rises can set in motion a
downward spiral of vulnerability, accentuate poverty, and possibly lead to malnutrition [134].
The World Bank (cited in Mundial [103]) estimated that the crisis forced an extra 105 million
people into extreme poverty1, adding to the 883 million people already living below this
threshold. Likewise, the FAO [47] food security assessment estimated that the crisis increased
the number of undernourished people in the developing world from approximately 858 million
1 Extreme poverty is defined as living on less than $1 per day [103]
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(a)Food Price Volatility

Year

1990
1995

2000
2005

2010
2015

A
n

n
u

a
lis

e
d

 H
is

to
ri
c
a

l 
V

o
la

ti
lit

y

0

5

10

15

20

25

30

(b)Cereal Price Volatility

Fig. 6.3 (a) Annualised historical volatility in the UN-FAO food price index (1990–2016), and
(b) volatility in the UN FAO cereals price index (1990–2016). Data source: [49].
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to 923 million, totalling an increase of 65 million people becoming food insecure since prices
began to rise. The USDA [142] estimate those figures at 849 million before the crisis, and 982
million after1. The crisis also reversed progress made by many countries towards meeting the
Millennium Development Goals to reduce hunger and malnutrition [140].

6.3 Origins of the Crisis

In the absence of a clear causal event, numerous arguments concerning the origins of the
crisis have been proposed. It is often noted that the causes of high commodity prices are the
result of a complex set of interrelated factors involving both the long-term fundamentals and
short-term shocks [144]. In terms of long-term trends, global population growth and strong
economic growth in Asia, undoubtedly contributed rising prices [134]. Both of these have
led to rising living standards and changing diets (particularly in increased meat consumption)
across the developing world, which, in turn, has led to an increase in demand and trade in
agricultural commodities globally [134]. While the general shift towards higher prices can
partly be explained by these long-term trends, it is also likely that changes in several other key
factors just prior to 2008, made the crisis all the more severe [74]. Ordered by the weight of
evidence in the literature detailed below, the most plausible of these factors are as follows:

• Historically low food-commodity stocks.

• Supply shocks caused by droughts and other extreme weather events.

• The diversion of grains to biofuel use.

• The petroleum price pass-through effect.

• The depreciation in the value of the U.S. Dollar

We review and critique the evidence for each factor below.

6.3.1 Low Stocks of Food-Commodities

Perhaps the least controversial causal factor proposed, is the decline in global stocks of many
staple food-commodities. Scholars are almost unanimous in pointing to the expectation of low

1 It is worth noting that the indicators outlined are based on relatively simple predictive models using data
collected prior to the crisis [1]. Little work has been done to validate these estimates after the event; therefore,
they should be interpreted with some caution.
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stocks in both 2007 and 2008 as having either a direct effect on rising prices, or as being a
prelude to the situation [1, 138, 101, 150, 111, 75, 134]. Stocks of grains, such as wheat, rice,
and maize can be taken as a direct indicator of food security in both self-sufficient and net-food
importing countries. These three commodity markets typically have inelastic demand, as the
majority of consumers depend upon grains as their staple food source. As such, consumers will
continue to purchase at high prices, even if that means giving up other expenditures, such as
health and education [150]. Supply of these commodities can also be somewhat inelastic as
there is a seasonal time lag between farmers receiving new price signals, and their ability to
change levels of production. However, when stocks are added to the production supply, the
total supply in the market becomes more elastic, as any increase in consumption (or decrease in
production) can be compensated for by the release of stocks [1]. Stocks can also limit the effect
of speculation on market prices, as they can be unloaded to negate the position speculators may
take in betting on rising prices [111, 150, 75].

Theoretically, when stock levels are low, relatively small changes in supply can result in
rapid price changes [111, 150, 75]. If stocks run out completely, then market demand becomes
identical to the consumption demand. At this point, any further shocks will have an extreme
effect on prices [1]. According to standard economic theory, we might expect that when stocks
are high, prices should be low and stable. Conversely, when stocks levels decline, prices will
rise and be volatile. We can assess these assumptions by comparing a measure of global stocks,
called the stock-to-utilisation (STU) ratio against the global commodity price index. The
stock-to-utilisation (STU) ratio indicates the level of carryover stock for any given commodity
as a percentage of the total demand or use. It is often used by traders as a rough measure of the
prevailing supply-demand conditions [137].

More formally, the STU ratio can be described as follows,

STU =
Beginning Stock+Total Production−Total Use

Total Use
×100. (6.1)

and can be simplified by consolidating the numerator to,

STU =
Carryover
Total Use

×100. (6.2)

From equation (6.1), beginning stocks simply represent the previous year’s ending stock of
a particular commodity, either on a per country basis, or the total stock available globally.
Similarly, total production represents the total grain produced in a given year and total usage is
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Fig. 6.4 On the left axis, global stock-to-utilisation (STU) ratios in (a) wheat, (b) rice, and (c)
maize, and on the right axis, the global price index of each commodity (years 2000–2012).
Data source: [143].
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the sum of all the end uses in which the stock used (i.e., consumption, waste, and exports). From
equation (6.2) the carryover is the amount of a commodity leftover and stored for consumption
the following year. The carryover stock divided by the total usage can be expressed as a ratio,
i.e., the stock-to-utilisation ratio. This ratio can be compared between years to indicate whether
current stock levels are low or high relative to past performance. Some trades use the STU ratio
to estimate both the direction of a price trend, as well as the size of those changes [137].

Historically, food-commodity markets have been characterised by a high-stock/stable-price
regime, infrequently punctuated by low stocks and volatile prices. From this historical record,
some benchmark ratios have been established for various commodities. For example, STU
ratios for wheat under 20% has typically led to strong price rises. In the case of maize, price
rises tend to require much lower STU ratios of around 12% [137]. These benchmarks are
evidenced by experiences in the 1974 food crisis. Prior to 1974, wheat stocks declined from
a peak of 41% STU ratio in the 1960s to only 21% by 1972. At this stock level, a modest
reduction in world wheat production is thought to have caused the annual price index to more
than double [74]. Similar events played out in the global maize market, where stocks declined
from highs of 31% STU ratio in 1960 to just 12% before the 1974 crisis [116]. However,
unlike wheat and maize, rice stocks rose continuously from the 1960s through to the 1980s
due to the ‘Green Revolution’, which saw agricultural production levels rise significantly
due to the introduction of high-yield grains, hybridised seeds, along with new fertilisers and
pesticides [73]. As such, rice stocks were not seen as a factor explaining the 1974 crisis [74].

As we can see in figure 6.4 (a), (b), and (c), stocks of all three commodities declined
preceding the recent 2008 crisis. From highs of around 30-35% STU ratio in 2000, wheat
and maize fell to 20% and rice fell to 15%. According to FAO [46] data published in July
2008, utilisation exceeded production in all years since 1999, bar 2004 when the harvests were
especially good. Headey and Fan [74] suggest that poor weather conditions and bad harvests in
2000, 2002 and 2003 are the cause, leading to the depletion of stocks globally. Although the
better harvest in 2004 was enough to replenish stocks that year, a severe drought in Australia
and other weather events led to another poor harvest in 2006, around the time the price rises
began (see Section 6.3.2 for further discussion). Stock levels were also thought to have declined
prior to the crisis due to policy decisions outside the scope of weather related stock adjustments.
China in particular, is thought to have reduced grain stocks in the 1990s and early 2000s, as the
benefits were no longer deemed to outweigh the wastage costs. In a similar vein, the advent
of just-in-time inventory management was thought to have made the use of large stockpiles
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obsolete [74].

Statistical analysis by Piesse and Thirtle [111] shows that the aggregate price index of
cereals (seen in figure 6.2) moves in the opposite direction to global cereal stock-to-utilisation
levels, implying that changes in cereal prices can be explained by changes in stock levels [111].
In figure 6.5, we expand on this analysis by disaggregating the cereal price index into it
constituent components (wheat, rice, and maize) and estimate the relationship between each
commodity’s STU ratio and the respective commodity price index over the period 1992 through
2015. As expected, there is a general negative relationship between the STU ratio and the
respective commodity price index. That is, low STU ratios are associated with higher prices
and vice versa. This is evidenced by the negative correlation coefficients (r values) across
all three commodities (see figure 6.5 d, e, f). We can see that in each commodity market, a
regression model with a lagged explanatory variable (i.e., where price is measured at time t

and the STU ratio is measured at time t −1), (seen in the top row of figure 6.5 a, b, c) results
in the most robust model in terms of both goodness-of-fit, measured by the R2 value, and
the p-value measuring statistical significance, i.e., that the slope of the regression model is
significantly different from 0. Conversely, where the regression models are forward lagged such
that the STU ratio is measured at time t +1 (seen in the bottom row of figure 6.5 g, h, i), the
relationship is found not to be statistically significant in any market. This is a good indication
that price changes follow changes in STU ratios, and not the other way round. Notwithstanding
these results, this relationship is far from established, as even the best models can only explain
between 33-49% of the commodity price changes. For example, looking at the maize model
in figure 6.5 (c), it might be more appropriate to use a non-linear regression model, similar to
that used by Good and Irwin [70], who achieved a better fit when estimating the relationship
between U.S. soybean STU ratios and prices using a model in the form,

y = a(1/x)+b, (6.3)

such that, the regression line becomes steeper and steeper as the STU ratio declines, and vice

versa.

Despite the relative weakness of the regression modelling, these data do show that, generally
speaking, the theory behind STU ratios and commodity prices is correct. We see across all
commodities and models that when stock levels are high relative to consumption, prices tend
to be both low and non-volatile, whereas at low STU ratios, prices are found to be both high
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Fig. 6.5 Correlation of wheat, rice, and maize stock-to-utilisation (STU) ratios and price indices
(years 1992–2015). Sub-plots (a, b, c) show the commodity price index against the previous
year’s STU ratios, with (d, e, f) against the same year’s STU ratios, and (g, h, i) against the
following year’s STU ratios. Statistical significance is indicated by (*) where p < 0.05 and
(**) where p < 0.01. Data source: [143].
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and low, suggesting higher levels of volatility. Hepburn [77] argues that these results indicate
that low stocks are a necessary but not a sufficient condition of price rises. Rather, there needs
to be a large adverse supply shock in addition to low stocks to trigger crisis conditions. The
following two sections examine the supply situation prior to the 2008 crisis.

6.3.2 Droughts and Supply Shocks

As mentioned above, drought and other weather related events have been identified as another
major factor underpinning the 2008 price rises and/or stock declines [74]. The period preceding
the 2008 crisis was marked by several serious droughts that caused harvest failures in several
major grain exporters [109]. Australia was hit the worst, suffering back-to-back droughts in
2006 and 2007 which reduced total grain exports by an average of 9.2 million metric tonnes
compared to 2005 [111]. Ukraine was also hit by poor harvests in 2007, which reduced their
grain exports by an additional 10 million tonnes compared to the previous year [111].

Mitchell [101] suggests that singling out those countries that were affected by weather
related shocks is being somewhat selective. In any given year, some countries are bound to
have better than average harvests and others worse. For example, in 2007 the decline in exports
from Australia and Ukraine were more than offset by good harvests in Argentina, Kazakhstan,
Russia and the US (see figure 6.6). Combined, these countries increased their total grain exports
by approximately 22 million tonnes compared to 2006. The net effect was a 4.7% increase in
global gain exports in 2007 [111].

To look into this issue in a more systematic way, we disaggregate exports in the global
wheat market over the 2000–2011 period, shown in figure 6.6. We can see that during the
period prior to the crisis, only in 2003 was the net position of the market significantly down
in export volumes, the major factors being drought in Australia and poor harvests in Ukraine.
2007 was also a poor year in exports, primarily due to the continuing drought in Australia.
However, strong export volumes in the U.S. made up for losses elsewhere, leaving the net
market position down only 1.3 million metric tonnes (small compared to the 130 million tonnes
of wheat traded in 2007).

After the crisis, high prices brought about a global supply response, with harvests up 4.9%
between 2007 and the end of 2008. Net exports also increased by 7.5 million tonnes in 2008,
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Fig. 6.6 Change in export volume in global wheat markets, 2001–2011 (measured in metric
tonnes). Colours show the change in each country’s export volume and the red line shows the
change in the net position of the market as a whole. Data source: [49].



www.manaraa.com

6.3 Origins of the Crisis 101

and 18 million tonnes in 2009 [49]. The post crisis period also saw stock-to-utilisation levels
increase by around 10% in wheat markets, 5% in rice, and 3% in maize (see figure 6.4).

6.3.3 Biofuel Production

Biofuel production in the US and EU created a major new source of demand in maize and
vegetable oil markets [101, 120, 144, 75]. It is thought that the rapid expansion in produc-
tion led to significant supply shocks in these markets, as well as knock-on effects in other
food-commodities. However, the causality of how biofuel production affects food prices is not
entirely straight forward. When oil prices rise high enough (above approx. US$60 a barrel),
suitable grains, such as maize, are often diverted from food and feed to biofuel production [119].
With oil prices reaching record highs, the use of maize for biofuels, such as ethanol, grew
rapidly from 2004 to 2007, to the point where biofuel production accounted for 70% of the
increase in global maize production. In the United States, the diversion of maize to biofuels
was approaching 30% of all production, some 81 million metric tonnes by 2007 [143]. Given
that the United States accounted for 60% of global maize exports in 2007, changes in U.S.
production significantly affected international prices [101]. Mathematical simulations devel-
oped by the International Monetary Fund [82] estimates that the diversion of maize accounted
for 70% of the increase in maize prices over the period 2006 to 2008 [93]. A similar study
by Schmidhuber [119] puts that figure at 60%. At the same time, the area planted for maize
also underwent a rapid expansion, increasing by 23% in 2007 alone. This expansion came at
the cost of other important food-commodities, leading to a rise in prices across all markets. For
example, a 16% decline in soybean planted area in 2007 is thought to have contributed upwards
of 40% to the increase in soybean prices in 2008 [93]. In Europe, other oilseeds used in biofuel
production displaced wheat for the same reasons [75]. The total impact on global grain prices,
estimated using a partial equilibrium model, found a 30% increase across all grains. Individual
estimates put maize, wheat, and rice price increases at 47%, 26%, and 25%, respectively [117].

Critics of the bio-fuel theory point out that the diversion of grains to biofuel did not come as
a complete surprise in 2007. Rather, the increase in demand was ‘baked-in’ to maize prices well
before the crisis. Biofuel mandates in both the US and EU were viewed as quasi-permanent
policy commitments, with foreseeable implications for the related growth in demand for grains
and oilseeds [150]. As Headey and Fan [75] point out, other biofuel crops such as sugarcane
that are not under mandated production, did not experience similar price surges.
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6.3.4 Petroleum Price Pass-Through

Several authors have highlighted the impact of rising crude oil prices [75, 1, 101, 151]. Oil
is used extensively throughout both the production and transportation of all commodities.
Therefore, rising oil prices during the 2007–2008 period arguably provide a strong explanation
of commodity-price escalation in both food and non-food commodities [75]. Moreover, agricul-
ture is more reliant on fuel intensive inputs such as fertiliser, which make up a large percentage
of farmers’ variable costs [1, 3, 151]. According to the International Energy Agency [80]
agriculture is second only to transport in the oil intensity of its energy usage, suggesting
agricultural input costs could be quite sensitive to pass-through in oil prices. For example,
Agricultural production in the United States is almost solely dependent on oil for its energy use.
In addition, given that grains are traded in bulk, agricultural prices are strongly influenced by
the cost of transportation [75].

Mitchell [101] provides an appraisal of the effect of rising oil prices on two major grain
commodities (wheat and maize) using examples from the U.S. First, he finds the percentage
of production costs from energy-intensive inputs (e.g., fertiliser, chemicals, diesel, and elec-
tricity) comprise 13.4% of the total cost of wheat and 9.4% of maize. Increases in the price
of oil, and the pass-through rise in the cost of these energy-intensive factors combined, led
to an average increase in the cost of wheat and maize production by 11.5% between 2002
and 2007. Transport costs also increased because of higher oil prices. Mitchell’s analysis
of farm-to-export prices suggests that transport costs could have added as much as 10.2% to
the cost of maize and wheat. Hence, the combined increase in production and transport costs
was approximately 22% over the period 2002–2007. Headey and Fan [75] later recalculated
Mitchell’s [2008] estimates after testing the sensitivity of his assumptions. Their calculations
showed a much higher pass-through of rising oil prices, in the region of 30-40% depending on
the model used. They also note that the rise in oil prices predates that in food prices, which is a
necessary, but not sufficient condition to notion that rising oil prices where a causal factor in
food price rises. Baffes [10] conducted a similar study using econometric methods. Using data
from 35 internationally traded primary commodities over the 1960–2005 period, their analysis
found crude oil price changes had the highest pass-through to fertilisers at 33%, followed by
agriculture at 17%. For comparison, metals had a pass-through of only 11%.

In figure 6.7, we present our own analysis on these data by estimating the relationship
between the IMF’s crude oil price index and the UN FAO food price index over the period 1992
through 2015. We find only a weak positive relationship (where r = 0.39, R2 = 0.15) between
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Fig. 6.7 Correlation of the crude oil price index and UN-FAO food price index (years 1960-
2015). Statistical significance is indicated by (**) where p < 0.01. Data sources: [82], and [49].

the two variables, but one that is statistically significant. Further regression modelling with
lagged explanatory variables did not improve the model fit. We also noted, that for specific
periods of recent history, the food and oil price indices have been negatively correlated. For
example, between 1975 and 1980 the correlation coefficient was, r = −0.46, and between
1990–2000, r = −0.23. These anomalies cast doubt on the oil price pass-through effect to
food-commodity markets.

In addition to the technical analysis outlined above, much has been made of the supposed
historical link between oil and food prices [150]. While it is clear that oil prices rose first,
and followed much the same trend as food prices during the most recent crisis in 2008 (see
figures 6.8 and 6.9), the historical record is far more nuanced than perhaps many authors have
suggested (see Headey and Fan [75] for examples). The precedent event, which started this
line of reasoning, was the 1974 food crisis. Much like the most recent food crisis, decades
of relative stability preceded the shock in 1974. The 1974 food crisis saw prices increase
by 75% in just two years (see figure 6.8). 1974 also saw the culmination of another major
international crisis, the so-called “first oil shock” caused by OAPEC’s (the Organisation of
Arab Petroleum Exporting Countries) oil embargo against the U.S. due to its involvement in the
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Fig. 6.8 Annual Crude Oil Price and UN FAO Food Price Index from 1960 to 2015. Real
prices are adjusted for inflation to March 2015 prices using the Consumer Price Index (CPI-U)
as presented by the Bureau of Labour Statistics. Nominal prices are historical free market
(stripper) oil prices of Illinois Crude. Data sources: [82], and [49].
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Yom Kippur War. Prior to this shock, oil prices had also been stable since the end of the Second
World War, rising less than 2% per year1. Owing to the embargo, world oil prices jumped
from around US$3 per barrel to over US$20 (nominal prices). These two events seemed to co-
incide, and the higher oil prices have long been proffered as a causal factor in the first food crisis.

However, a closer inspection of the data shows that world food prices peaked before oil
in 1974. Especially in specific food-commodity markets such as soybeans, which had exports
restricted to control domestic food inflation in the U.S. World oil prices on the other hand, only
peaked in 1977, before going on to reach new highs in 1980. The 1979 Iranian Revolution
caused this second jump in oil prices (referred to as the “second oil shock”), which lead to
the suspension of oil exports from Iran (a major exporter). If these increases in the cost of oil
were passed-through to food prices, as per theory, we should expect a further food price crisis
in 1980. While nominal food prices remained high throughout the 1980s (see figure 6.9), in
real terms, food prices went into decline after 1974, and remained low for the best part of two
decades. This was due primarily to the effects of the “Green Revolution”, which saw large
increases in agricultural productivity in the developing world from the introduction of fertilisers
and new breeds of crop.

Wright [151] has also identified some problems with oil price pass-through effect in relation
to fertiliser costs. He argues that pass-through to fertiliser prices would only affect food
production if it caused farmers to cut back on fertiliser use. However, during the 2008 crisis,
fertiliser producers like Saskatchewan Potash were operating at capacity and generating large
profits [151]. This is because fertiliser has a multiplier effect on farm profits. It is a fairly
simple calculation for farmers to make, purchasing fertiliser at 2 or even 3 times the normal
rate can still help turn a profit, if the value of the crops grown have also risen. Wright [151]
also notes that even if fertiliser inputs had been cut in response to high prices in 2008, their
effect could not have been seen until the next harvests, typically almost a year later. However,
as figure 6.6 shows, there were record exports in 2009, indicating good harvests that year.

6.3.5 Decline in the value of the US Dollar

Abbott et al. [2] have argued that the depreciation of the U.S. dollar prior to 2008 was also
a major factor in food price rises, interpreting the crisis as a predominantly macroeconomic
phenomenon, rather than a supply or demand problem. The U.S. dollar began to lose value

1 Largely due to the Bretton Woods system, which effectively collapsed after 1973
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in 2002, first against OECD country currencies, and later against many developing countries’
currencies [111]. If the U.S. dollar loses value relative to a currency of an importing country,
then that country will face increased costs when importing U.S. goods. Given the U.S. is a
major exporter of many agricultural commodities, especially grains such as wheat and maize,
then those costs could have risen by up to 63% between 2002–2007 [2].
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Fig. 6.10 UN-FAO monthly food price index and monthly exchange rate index of U.S. Dollars
to Euros (2001–2016). Both indices are normalised such that 2002–2004 average = 100. Data
sources: [49], and [133].

However, the effect on food price rises caused by US dollar depreciation remains an area
of contention [111]. Abbott et al. [2] are alone in arguing that it was the dominant factor.
Gilbert [64] argues that while there is undoubtedly a relationship between the value of the US
dollar and food prices, this link is not well understood. He suggests that on this occasion, the
depreciation of the dollar was not sufficiently large or general to be a major explanatory factor.
For example, while the US dollar fell by 50% over the period 2004–2008 relative to the Euro
(see figure 6.10), it changed hardly at all relative to key Asian currencies.

In addition, Mitchell [101] argues that the food price changes prior to the crisis do not
closely correlate with the falling U.S. dollar. He states that “from January 2002 to December
2004, food prices rose 24% and the dollar fell 34% against the Euro. Then, from January 2005
to December 2007, food prices rose 65% and the dollar fell 10% against the Euro” [101, p. 11].
Thus, the US dollar fell less when food price increases were reaching their peak [111]. From
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these findings, Mitchell [101] estimated that only 20% of the rise in food prices could be due
to U.S. dollar depreciation.

In figure 6.11, we estimate the relationship between the monthly U.S. Dollar/Euro exchange
rate index and the UN FAO food price index over the period 2001 through 2015. We find a
much stronger negative correlation (where r =−0.75,R2 = 0.56) between the two variables
than Mitchell [101] suggested could be found (note that there was no improvement in the model
fit by lagging the explanatory variable to 1, 3 or 6 months). By our estimates, U.S. dollar
depreciation could have accounted for more than 50% of the rise in food prices. Naturally, this
effect only explains food prices rises in Eurozone countries1 importing food-commodities from
the U.S. But these are the most widely reported figures concerning world trade.

1 The Eurozone consists of Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Portugal, Slovakia, Slovenia, and Spain [42]
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6.4 The Role of Export Restrictions in the Crisis

As discussed above, the true origins of the crisis remain a matter of debate. However, evidence
from many sources agrees that export bans and other trade restrictions put in place by large
food-exporting countries, played a key role in aggravating the crisis. It is thought that while
export restrictions did not cause the crisis, they did contribute to large price surges in at least
three key food-commodity markets—wheat, rice, and maize [6, 102, 134, 26, 97, 74]. Coun-
tries that restricted or banned exports included several major rice exporters such as; China,
Cambodia, Egypt, India, Indonesia, and Vietnam, several wheat exporters including; Ukraine,
Kazakhstan, and Russia. Argentina and China were important maize exporters that also re-
stricted exports [124]. Export restrictions were less important for other food-commodities,
such as soybean and rape seed, as their export markets are heavily dominated by countries
that did not imposed restrictions1 [75]. The full list of export restrictions, shown in Appendix
C1–3, was compiled from a variety of sources including; the World Trade Organisation’s Trade
Monitoring database [149], the Centre for Economic Policy Research’s Global Trade Alert
database [28], and from academic sources including: Shama [124], Slayton [127], and Dollive
[38]. This list includes information on each trade restriction including: a start and end date; the
type of policy enacted (tax, ban, or minimum price); and also which markets were affected.

Restricting exports directly impedes the physical flow of goods out of the country, thereby
increasing the supply available to domestic markets [71]. This, at least theoretically, reduces
the domestic price of food relative to the rising world price [97]. However, such actions
have a ripple effect, passing on food price volatility to other exporters and make for more
unstable international markets [2]. Countries on the receiving end of such policies face having
fewer sources of supply from which to make their purchases. This invariably leads to higher
prices. This ‘tightening’ of world markets can also heighten existing food security concerns,
encouraging the hoarding of additional supplies [138]. The use of export bans can lead to
a highly volatile situation which poses several interrelated risks to food import-dependant
countries [118]. First, there is a risk that food-commodity prices will increase above affordable
levels [118]. Second, the physical availability of food-commodities may be threatened. In
extreme situations, several exporters may impose restrictions simultaneously, making it difficult
for importers to secure alternative supplies in the time-frame needed [11]. While seemingly
unlikely, this scenario has occurred in rice markets recently, when a flurry of restrictions in 2008
saw availability fall to the point where importers were reportedly unable to secure supply [12].
1 Specifically, Australia, Canada, E.U. states, and the United States.
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The consequences of such an event is likely to be more severe for those countries that are
heavily dependent on imports [147]. The third risk is that an international trading firm (the
counter-party) will default on its contracts and fail to deliver any grain at all. This can often
happen, as the firm may not necessarily own the goods that are to be delivered at the time the
contract is agreed. If prices subsequently rise it may be better, financially, for the firm to default
than trade at a loss in profits. In periods of rapidly rising food prices, counter-party risk leaves
importers in the position of having to make more short-term purchases at higher prices [118].

Food price volatility and the associated risks outlined above are thought to have propagated
throughout the international trading system as a cascading effect1, with country after country
banning exports in a struggle to keep their own domestic prices low [67]. However, by trying
to insulating their own domestic market from international prices, each ban enforcing country
simply forced the price volatility to be borne by other countries in the international market [102].
For example, Dollive [38] points to a clear contagion effect, between wheat export restrictions
put in place by Ukraine, Russia, and Kazakhstan. Starting in July 2007, Ukraine announced
strict export quotas that amounted to a complete ban on wheat exports [75]. Ukrainian exports
fell approximately 77% the following year. As a consequence, many of Ukraine’s largest trade
partners switched to other major wheat exporters in the region, particularly, Kazakhstan and
Russia. This resulted in greater pressure on Russian and Kazakh wheat exports, leading to the
halving of wheat stocks in those countries. Worried by the effect of these developments on
their own populations, who were struggling to afford staple foods, Russia and Kazakhstan both
implemented their own export restraints in early 2008 [38].

This phenomena of cascading price volatility is similar to other economic shocks or ‘per-
turbations’ in that it can propagate globally via the network formed of countries connected
together through trade [68]. Research has shown that a country’s susceptibility to perturbations
can be directly related to its level of integration in the trade network [87]. Similarly, Wu and
Guclu [153] have theorised that clusters of interconnected nations in food-commodity markets
could leave countries more or less robust to the impacts of sudden disruptions in other parts of
the world. In both of these studies [87, 153], trade data has been analysed by modelling the
world trade system as a network. In each market, multiple countries are connected together
by many trade links. Taken together, these links give the network its structure (or topology).
Export restrictions can affect this structure by removing specific trade links from the network.

1 Giordani et al. [67] prefer to describe this phenomena as a ‘multiplier effect’, as a cascade implies a linear
system of cause and effect, whereas export restrictions effect multiple countries simultaneously
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Each link removed in this way effects the network’s overall topology, with some countries
effecting the network more than others. The recent proliferation of export restrictions provides
an opportunity to test these propositions and further explore the role the network structure of
trade plays in propagating food-security risks in international food-commodity markets.

6.5 Methods

6.5.1 Modelling Export Restrictions in Networked Markets

Similar to the methods used in Chapter IV and Chapter V, we use international commodity
trade data from the UN Comtrade database [141], this time selecting transactions over the
period 2007–2012, for each of the three major international grain markets; wheat, rice, and
maize1. These data are used to construct a weighted-directed adjacency matrix of a network,
where vertices represent countries, and edges denote the volume (measured in US$ worth) of
imports/exports of a commodity between those countries. The Matlab function to do this is
reproduced in Appendix C4. Note that the Comtrade data used are of a low resolution, with
changes in trade being recorded only on a yearly basis up to 2010, then monthly [141]. The
monthly Comtrade data was not extensive enough to cover the period of this study. As such,
the effects of short-term export restrictions (i.e., those in effect < 12 months) may not be fully
accounted for in the results.

We model these data to account for dynamic changes in the network topology, such that
all measures of the network act as a function of time. Here, time is denoted as ty = 2007+ y,
and y = 0,1,2, ..., t, representing the years 2007-2012. we arranged the Comtrade data for each
year (ty) in a n×m adjacency matrix A(ty), where elements ai j(ty) of A(ty) indicate yearly
trade between the n = 1,2, ..., i food-exporting countries and the m = 1,2, ..., j food-importing
countries. Furthermore, for every non-zero element in the adjacency matrix, the volume of
trade between exporter i and importer j, recalculated as a percentage of country j’s imports, is
recorded in a similar n×m weight matrix W(ty).

The purpose of this method is to measure how export restrictions effect the structure of
the network. From a topological perspective export restrictions act by removing edges from
the network. We can measure this process via the edge-detachment rate Dk, i.e., the rate at

1 HS-02 classification system was used to select the product codes; 1001, 1006, and 1005 denoting trade in wheat,
rice, and maize respectively.
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which edges are removed from vertices of degree k. More specifically, to measure a single case
d, where a trade restriction imposed by exporter i affected trade with the importer j in year y,
leading to the removal of the link ai j(ty), in the network’s adjacency matrix, we can compute

di j(ty) =

1, if ai j(ty−1)−ai j(ty) = +1

0, otherwise.
(6.4)

Thus di j(ty) = 1 signifies a complete loss of trade between i and j in year y. The frequency
of these events is simply the sum of all instances of d in a given year. To understand how
the likelihood of export restrictions vary with a country’s position in the network, we apply a
sorting algorithm so that countries are arranged into subsets, with each subset relating only to
importing countries of k degree. Taking the average number of edge-removals in each subset
thus gives the edge-detachment rate Dk

Fig. 6.12 Schematic of a single export restriction in a simple network.

We illustrate this process in figure 6.12, showing the result of a single export restriction
in schematic form. In our example, at time period ty, exporters 1 through 3 are trading with
importer 4. Supply is measured by the trade link weights, so that where w14(ty) = 0.3 denotes
that country 1 supplies 30% of country 4’s imports. In the following year ty+1, the government
of country 1 places a restriction on exports, leading to the loss of trade between 1 and 4. In
this instance, we would record d14(ty+1) = 1 satisfying the condition of equation (6.4). The
percentage of trade lost due to this export restriction is calculated by multiplying d14(ty+1)
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by the trade link weight in the previous year w14(ty). Note that in the following year the link
weights are updated so that ∑i wi4(ty+1) = 1, to allow consistent comparison across years. We
use percentages here so that the edge weights show which trading partners are important locally,
to each specific importer regardless of size and trading volumes (which can vary greatly across
markets). However, the trade values can also be calculated in terms of US$ of trade if required.

6.6 Results

Before looking at the impact of export restrictions, we report summary network statistics for
the three food-commodity markets in question. First, we calculate the number of trade links
to-or-from a country in a given year (i.e., the vertex degree k) as follows. For an exporting
country (out-degree),

ki(ty) =
n

∑
j=1

ai j(ty), (6.5)

and for an importing country (in-degree),

k j(ty) =
m

∑
i=1

ai j(ty). (6.6)

The average number of trade links per country is denoted as 〈k〉. The relative frequency by
which countries are connected by these degrees is expressed by the network’s degree distribu-
tion P(k). The cumulative degree distribution (i.e., P(K ≥ k)) for imports and exports in each
of the three markets are shown in figure 6.13. We have covered the methods for studying the
precise functional form of these distributions at length in Chapter IV, so we will not reiterate
here. However, it is worth noting that the rice and maize markets, which were not studied in
the previous chapter, follow much the same distribution as other markets. That is to say that the
probability of finding other exporters with a similar degree, decays in a highly non-linear trend.

Like many other real-world networks, these markets are sparse [13], that is to say, the
average number of trade links is far less that the total number of exporting countries in the
network, so that 〈k〉 � n. In the case of the wheat market, 〈k〉 = 11, whereas n = 187. In
addition, the degree range is between 1–110 (with the United States, the world’s largest wheat
exporter, having the highest degree), whereas the mean degree is only 〈k〉= 11. Similar trends
are found for both rice and maize markets as shown in Table 6.1. As such, we can say the vast
majority of exporters tend to trade with relatively few countries. This is perhaps reflecting the
fact that trade with geographically neighbouring countries (i.e., cross-boarder trade) represents
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Fig. 6.13 Import and export degree distributions of selected markets.
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a large portion of trade globally [141]. Only a handful of exporters have an extensive number
of trade links, but those who do, trade with almost every other country active in the market. For
example, the top four exporting countries in the global wheat market are the USA (k = 110),
Canada (k = 76), France (k = 74), and Australia (k = 47). A measure of export degrees gives
us some indication as to the maximum number of food-importers that could be affected by
a trade restriction imposed by a k degree exporting country. For example, a trade restriction
imposed by the United States, with its 100+ country trade network could be severely damaging
to world wheat supplies. If we compare that to Ukraine, who only supplied wheat to 38 other
countries during the time under study, we would be looking at under half the network affected.
Of course, this does not tell us the likelihood of either country banning wheat exports, only the
theoretical outcomes of such a policy decision.

Table 6.1 Network statistics for selected commodity markets.

Wheat Rice Maize

Export

Mean node degree 〈k〉 11 16 13
Degree Range kmin, kmax 1–110 1–147 1–138

Import

Mean node degree 〈k〉 9 16 11
Degree Range kmin, kmax 1–38 1–58 1–42

Total number of links |E| 1398 2697 1767

We can also see that the total number of trade links in each market |E|, is positively
correlated with higher values of 〈k〉. Similarly, having more trade links leads to a wider degree
variance, giving a larger range of degrees. Of the commodity markets studied, the market
with the most trade links is rice, (2697 links), more than twice that of wheat (1389 links), and
significantly more than maize (1767 links). This is surprising, given that rice is often called
a ‘thinly’ traded commodity (as 90 % of all rice is consumed domestically [75]), but from a
network perspective, rice is the most actively traded commodity of the three. Similarly, the
rice market also has the highest mean degree 〈k〉= 16, and the largest range of k degree nodes
(1–58).
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6.6.1 The Impact of Export Restrictions

In real-world trade networks, importers are connected to multiple exporters, and vice versa,
so while a trade restriction may affect many parts of the network, it can also be mitigated to
some degree by having a redundancy in supply. It follows that countries with a higher degree
(i.e., those with many trade links), would have a greater degree of redundancy. Conversely,
countries that depend on a limited number of suppliers are theoretically more vulnerable to
disruptions [153]. However, we must consider whether being more integrated into the network
also increases a country’s exposure to these risks. That is to say, is there a relationship between
country’s position in the network and the likelihood of being affected by export restrictions?

Although individual export restrictions are impossible to predict and do not occur in a
strictly regular pattern, we find a very general statistical regularity to these events. Figure 6.14
shows a histogram of the yearly rate of trade links being removed from the network, measured
per k-degree. The data fits a linear model, with r = 0.75 (with a goodness of fit R2 = 0.56).
That is to say, that high k countries are affected more often than low k countries, and that this
relationship is monotonically linear in k. Specifically, given a country with degree k and another
with a degree of 2k, we would expect the latter to be approximately 1.4 times more likely
to be affected by an export restriction. This suggests, while each individual trade link in the
network should have an equal chance of being affected, this process has a form of preferential
detachment when measured by a country’s degree. From these data, we can also say that
the edge-detachment rate Dk ∼ k+α , where α is a linear scaling coefficient. There is some
difficulty in estimating Dk for high degree countries, as there are so few observations in the
data (due to their relative scarcity in the network), but their seems little reason to suggest this
trend would not hold.

In market networks, not all trade links are of equal value. The volume of trade through each
link can vary significantly, even between those connected to the same importer. To take this
variation into account, we estimate the expected losses to supply from the effect of an export
restriction. Figure 6.15 shows the edge weights (measured as a percentage of total imports)
for k degree importers in the wheat market over the period 2000-2012. Naturally, the link
weight for importers with only a single trade link is always w1 = 1, as that sole edge must
supply 100% of imports. We can see that where k > 1, there is a wide range of edge weights.
Interestingly, even some high degree countries source 90-99% of their imports from just a
single supplier, despite trading with many others. However, if we look at the average edge
weights 〈w〉k, importers tend to source their supply equally from each of their trade partners.
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As such, the mean edge weight distribution can be modelled simply as 〈w〉k ∼ 1/k. This means
that in high degree countries, approximately 90% of trade links supply no more than 10% of a
particular country’s imports, with many edges supplying less than 1%. This places a limit on
the potential impact of a single export restriction to these high degree countries.

6.6.2 Developing a Composite Risk Index

Now that we have some insight on how trade networks are structured, we want to understand
whether the benefits of being more integrated into the network (i.e., increased redundancy)
outweigh the risks, through increased exposure to export restrictions? To do this, we combine
both factors outlined above into a composite risk index [94], which typically follow the form

risk index = impact of risk event × probability of occurrence

To measure the impact of a risk event, we calculate the expected losses to k-degree countries
from a single export restriction P(wk). This value gives an indication of how much redundancy
a country is likely to have, in terms of the effect on import supply (with lower values being
better). For the probability of occurrence, we take the probability distribution function for one
edge being removed from the network P(dk = 1). This value quantifies the increased exposure
to export restrictions in higher degree countries. The composite risk index then combines these
values as follows,

Rk = P(wk) ·P(dk = 1), (6.7)

where the risk index Rk is a unit-less value on a scale [0,1] that allows us to compare risk across
the network. By this measure, values of Rk � 0 implies that k degree countries are at greater
risk from export restrictions. By design, values of Rk display positive homogeneity [94], that is
to say, if the value of R1 is twice as large as R2, the former faces twice the risk.

Figure 6.16 shows the completed composite risk index for wheat importing countries. We
find that the level of risk is highest for those countries with low degrees (particularly where
k < 5). The risk index then decays for increasing values of k, with risk levelling off at high
values of k. While low degree countries are unlikely to be affected by export restrictions due
to their low connectivity, they tend to be highly or entirely reliant on just one trade partner
to supply the majority of their imports. As such, a disruption to supply could potentially
lead to these importers being cut off from international markets altogether unless alternative
trade contracts can be negotiated. Countries with very high degrees have the lowest levels
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of risk, despite being more likely to be affected by export restrictions. In effect, high degree
food-importing countries are able to diversify their supply such that a disruption to one trade
link will have only a minimal impact on the overall flow of imports.

6.7 Discussion

6.7.1 A Policy for Strategic Reserves for Import Dependent Countries

Following the recent spate of export restrictions, numerous proposals have been put forward in
order to mitigate both import supply and price risks. These proposals include both bilateral or
multilateral agreements to limit export restrictions, increasing physical reserves of grain in both
the public and private sectors, creating so-called ‘virtual’ reserves at regional and international
levels, and various improvements in coordination, logistics, and to the flow of information
across nations (see Torero and von Braun [136] for details). A natural response to volatility in
international markets is to refocus on national self-sufficiency in order to provide a sense of
food security. While self-sufficiency reduces a country’s reliance on trade, it comes with its own
risks and costs [96]. For example, using limited land and resources to grow low value staple
crops may have a high opportunity cost compared to using those same resources to produce
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high value goods for export. In addition, encouraging agriculture in increasingly marginal
areas can leave production more susceptible to weather related shortfalls and climatic risks [90].

The policy we focus on in this study is the practice of maintaining strategic grain reserves.
The stockpiling of grain reserves has a long history in food security debates. After the recent
crisis, many countries have renewed their interest in such policies, particularly in the heavily
import-dependent Middle East and North Africa (MENA) region [118]. Since 2011, these
countries have been planning to increase their strategic storage capacity to accommodate
reserves that will last up to one or two years in some cases [90]. Wright [152] argues that
this policy response is almost inevitable given how unreliable suppliers have proven to be in
a crisis. Pursuing a policy of building strategic reserves creates two challenges that need to
be addressed: the determination of optimum stock levels, and the decision on how to finance
the associated cost of maintenance [136]. In terms of cost, physical reserves are expensive
and must be rotated regularly. Unfortunately, those heavily import-dependant countries that
are likely to need extensive reserves, are generally those least able to afford it [136]. There
are several additional costs that may need to be considered [90]; capital investment is needed
to expand capacity by building new storage facilities; transport infrastructure may require
upgrading; there are costs for training staff in how to manage these reserves; and countries must
be able to afford the initial increase in grain purchases require to fill reserves. Maintaining a
transparent and accountable governance for these reserves could also be considered a cost [90].
Once built, strategic reserves can be used to mitigate intermittent price risks and smooth out
market volatility by selling stock to domestic consumers at lower than market prices. However,
such a strategy offers no protection against structural, long-term price increases [90].

Strategic reserves can be used to manage supply risks, i.e., the risk that grains will not be
available to purchase from international markets. The strategy is relatively simple in theory,
in that a government only needs to ensure that enough grains have been stockpiled to supply
the domestic market through a period of unavailability [90]. Small reserves can also give the
importing countries the time they need to secure alternative supplies and avoid outbreaks of
panic buying and hoarding [104]. Sadler and Magnan [118] suggests that calculating optimal
levels might be formulated as follows: the average per capita consumption by month, multiplied
by the number of citizens, and by the number of months a stockpile should cover. The first two
variables are relatively easy to calculate from government census data and food surveys. The
last variable, however, is dependent on a further set of factors including a country’s level of
import dependency, risk tolerance, and, importantly to this study, a country’s vulnerability to
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supply disruptions [146].

By understanding which factors make a country more or less vulnerable to supply disrup-
tions, such as export restrictions, we can shed some light onto which set of countries should
maintain the highest levels of strategic reserves. In the case of the wheat commodity market we
can see from the risk index in Figure 6.16, that low degree importers (where k < 10) face the
highest level of risk. Here, each export restriction is likely to affect a significant percentage
of supply (ranging from 10% to 100% of imports per link, see Figure 6.15). Those countries
with the highest vulnerability to import supply should benefit the most from maintaining higher
stockpiles and this should justify the cost. However, while these countries have the highest
expected losses, they are not expected to be affected very often. This could work in favour of a
strategic stockpile policy, as maintaining domestic stockpiles would not be viable in a climate
of high frequency supply disruptions, as having to replenish stocks on a regular basis could
rapidly become unaffordable to governments pursuing such a policy. High degree importers
(where k > 10) face a relatively higher rate of supply disruptions, but due to their increasing
redundancy of supply can mitigate the consequences of each restriction far better. Increasing
levels of supply redundancy not only lowers their level of risk, but also leads to lower expected
losses, as each link generally accounts for only a small proportion of overall imports. These
countries can in effect, leverage their position in the network to mitigate the supply risk. This is
an example of a ‘risk-sharing’ approach to supply chain resilience [76], where importers seek
as many suppliers as possible to be able to compensate for the loss of one supplier.

To illustrate how these metrics could be applied in developing a policy of strategic reserves,
we apply our method to Yemen as a test case. Yemen is a net-food-importing country that
is dependent on international trade for up to 75% of its domestic food consumption [7]. For
wheat, one of the country’s staple foods, dependency on trade is closer to 90%. In addition,
96% of the population are net-food buyers [113], and Yemeni households in the lowest decile
of income have to spend up to 55% of their monthly expenditure on food [145]. As such, the
food security situation in Yemen is extremely sensitive to events in international markets [7].
Yemen is the 18th largest wheat importer globally [149] and imports from approximately 16
countries on average (over the years 2000-2012), so the mean degree 〈k〉 = 16 (rounded to
the nearest integer). Total imports are approximately US$1,000,000,000 of wheat per year.
An average trade link to Yemen supplies approximately 1/k of imports per year, so that the
mean import link-weight 〈w〉 ∼ 0.0625, or in US$62,500,000. The expected number of links
effected by export restrictions per year D16 ∼ 3. As such, we can calculate the yearly expected
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loss to import supply as 0.0625×3 = 0.1875, or US$187,500,000, approximately 0.19% of
Yemen’s yearly food import bill. These values could be used as an estimated budget for Yemen
food security programme to hedge against the risk posed by export restrictions in the wheat
market.

6.8 Conclusion

In this chapter, we built on previous research which has shown that a country’s susceptibility to
economic shocks is directly related to its level of integration into the trade network’s structure.
Informed by a network theory approach, we analysed three major food-commodity markets
(wheat, rice, and maize) using UN Comtrade data. We model each commodity market as
a network to considered whether a country’s position in this network affects the likelihood
of it being affected by an export restriction. We find that the average yearly rate at which
food-importing countries are affected increases as a function of a country’s degree. It follows
that the more connected a country is in the network, the more likely it is to be on the receiving
end of an export restriction. However, we also find that individual trade links to high degree
countries tend to supply only a small fraction of overall import volume. As such, removing one
of these links is unlikely to result in significant shortfall in aggregate supply. We combine these
two factors into a composite risk index to compare the risk posed by export restrictions to each
country based on its position in the network. We interpret these risks in terms of developing
a policy of strategic reserves and provide a case study example showing how these network
metrics could be applied to improve a country’s food security situation.

It should be noted that food security is a multi-faceted problem, whereas we focus on a
narrow dimension of the problem. Before making policy recommendations on a per country
basis, we would need to take into account several other important variables. In particular, a
country’s import dependency ratio (i.e., the ratio of net imports to domestic consumption)
and foreign exchange reserves play an important role in determining how much capacity a
country has to deal with both price and supply risks (including export restrictions). The import
dependency ratio is indicative of a country’s dependency on foreign imports to satisfy domestic
demand [78]. This is important in terms of determining how much of a shock to international
markets will be passed on to domestic consumers (usually in terms of food price rises). The
value of a country’s food imports as a share of foreign exchange reserves is also important,
as it determines how easily they can pay for imports and adjust to higher prices. Low levels
of foreign exchange reserves are particularly a problem for many developing countries [146].
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While these variables are undoubtedly an important factor in a country’s overall food security
outlook, they are largely predicated on a country’s own geography and economic situation,
rather than its position in the network, so as such they are beyond the scope of this study.
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Chapter 7

Conclusion and Outlook

7.1 Research Contributions

The broadest contribution of this thesis is in the exploration of the intersection between eco-
nomic theories of trade and applications in graph theory. The rise of globalisation and the
increasing importance of trade in the global economy shows that work in this area is well
motivated. While the field is relatively new, with only a small range of existing literature,
we have shown that these two, seeming disparate, fields can be effectively brought together.
More specifically, we have shown through a variety of models, experiments, and simulations
that real-world policy issues can be addressed using a quantitative network approach. This
approach is important for two reasons. First, it will help the policy community understand how
the structure of trade networks affects the behaviour and dynamics of international commodity
markets, and second, by developing policies that favour more stable and equitable network
structures, we can aid in guiding the restructuring of future trade networks.

In the remainder of this concluding chapter, we provide an overview of the thesis results
from each of the three projects in Section 7.2. We outline areas for further development in
Section 7.3, and in Section 7.4, we offer some discussion on the policy implications of our
findings with regard to developing international trade policy.
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7.2 Overview of Thesis Results

7.2.1 Chapter IV: Growth in Network Models of Commodity-Trade

In Chapter IV, we found that reports of power-law behaviour in the degree distributions of
international trade networks are not as categorical as the literature would imply. We outlined the
common critiques of these works and identified a wide-range of empirical degree distributions
using methods that are more appropriate. Having found that true power-law degree distributions
are unlikely, we re-evaluated the use of the so-called ‘preferential attachment’ model that is
widely interpreted as the underlying model of network growth in the trade literature. Using
alternative methods, we showed that connectivity growth in many trade networks is in fact
constrained, due to the limited opportunities for new countries (vertices) to enter these markets,
resulting in far different network topologies than the preferential attachment model predicted.
Taking these findings into account, we developed a new single parameter model that reproduces
the structural features of a wide array of international commodity trade networks. An interesting
feature of this model is that it can resolve to the Barabási-Albert (B-A) preferential growth
model [14], or the Erdős-Rényi (E-R) random graph model [41], simply by tuning the model’s
only parameter, giving us the ability to compare the empirical trade networks to both these
well-known theoretical ideals. We concluded by discussing the wide reaching implications of
our findings. First, in applying the model to estimate future market growth, and second, in
terms of understanding of the structural robustness of critical commodity markets. In the first
case, we found that the B-A preferential attachment model overestimated the growth in network
size and connectivity by more than two orders of magnitude when compared to the constrained
growth model with empirically estimated parameters. In the second case, we found that our
model implies that real-world trade networks may be far less robust to error type perturbations
than the B-A model would suggest.

7.2.2 Chapter V: Price Variation in Network Models of Commodity-Trade

In Chapter V, we develop further the graphical exchange model. We applied this model to data
from international commodity markets in order to measure the effect of the network structure on
price asymmetries. Using the model, we investigated the local determinants of price variation,
and measured how global prices vary between networks with different topological structures.
In the first case, we find that increasing an exporter’s degree (i.e., the number of importers that
a country trades with) also increases its prospects of obtaining better prices. However, we also
find that increased competition in the market, measured by the average nearest neighbours’
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degree, rapidly reduces the maximum price an exporter can command. In the second case, we
simulated several synthetic markets using the network growth algorithm developed in Chapter
IV, so that we could measure global price inequality (measured here by the Gini coefficient)
across networks with a range of different degree distributions. Our results suggest that price
inequality increases as network degree distributions become more heterogeneous. Along this
scale, we find most real-world export markets are relatively equal. However, these markets are
also found to be in a very sensitive position, so that any change in the network’s rate of growth
could dramatically increase price inequality between exporters in these markets.

7.2.3 Chapter VI: The Risk of Export Restrictions to Food-Commodities

In Chapter VI, we explored the causes and consequences of the global food crisis—a recent
episode of extreme food-price volatility that deeply affected many consumers in food-import
dependant countries. One of the key factors that exacerbated the crisis were export restrictions
placed on trade in several major grain markets. We found that an importing country’s suscep-
tibility to export restrictions and similar shocks can be directly related to the structure of the
international trading network. To investigate this issue further, we developed a network theory
approach to measure the effect of export restrictions in three of the major food-commodity
markets. Our findings showed that the average yearly rate at which food-importing countries
are affected by export restrictions increases as a function of degree. However, we also found
that trade links to high degree importers tend to supply only a small fraction of the importer’s
overall supply volume. As such, removing one of these links is unlikely to result in significant
shortfall in supply. We used this analysis to develop a composite risk index that assesses the
risk posed by export restrictions to food-importing countries, based on their position in the
network. The index shows that the level of risk falls significantly for high degree countries
despite the aforementioned exposure to export restrictions. We used this risk index to develop a
policy of strategic reserves, and provided a case study example, showing how these network
metrics could be applied to improve a country’s food security situation.

7.3 Future Work

This section outlines future research that could directly extend this study and improve our
ability to quantifying commodity markets in terms of a network topology, and develop new
tools for investigating real-world policy concerns. We see the need for future work in four
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specific areas, the first three relate to the constrained growth model developed in Chapter IV,
and the last relates to the risk index developed in Chapter VI.

1. Using the constrained growth model developed in Chapter IV, we might also consider in-
vestigating correlations between country degree and second-order topological properties,
such as the average nearest neighbour degree, and local clustering coefficients. There are
already many reported values in the literature that could be used to further validate our
model.

2. We could also work on validating and improving the constrained growth model’s perfor-
mance in predicting future market growth by back-testing predictions against historical
data.

3. Based on our conclusion to Chapter IV, work on quantifying the robustness of networks
generated by the constrained growth model would be another area to consider.

4. In Chapter VI, we found that, generally speaking, higher degree countries are less at
risk for export restrictions than low degree countries. However, an important caveat to
these results is that each set of k degree countries has its own distribution of risks that
changes qualitatively between sets. Therefore, we could improve the accuracy of our risk
assessment in this area by considering these changes. Further work in this area could
apply a Bayesian approach to measure the conditional probability of export restrictions
based on country degree [83].

7.4 Policy Implications

In this final section we discuss the implications of our findings with regard to developing
international trade policy. Methods for improving growth (both in terms of network size and
connectivity) in international commodity markets is increasingly important to policy makers, as
international trade itself, has become the primary means of stimulating economic development
in many of the world’s least-developed countries [126]. This is also a symbiotic relationship,
as furthering the development of export-orientated industries aids in integrating these countries
into the global economy [139]. However, as noted in the introduction to this thesis (Chapter
I), the use of direct market interventions tends to influence outcomes in favour one set of
consumers (typically in developed industrial nations) over another (in developing and emerging
economies) [131]. Therefore, we need to think about a more systems level approach that can
work for all involved. One way of achieving growth that benefits both sides is through the use
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of Foreign Direct Investments (FDI), which the World Trade Organisation (WTO) define as
investments made by businesses in a developed country (referred to as the ‘home’ country)
to acquire assets in a developing country (the ‘host’ country) with the intent to manage those
assets (as opposed to passive investments via the purchase of company stock) [22]. Foreign
direct investment is usually achieved through mergers and acquisitions, or through the creation
of new facilities such as ports, mining operations, transport infrastructure, logistical services,
and export-orientated agriculture. The WTO [22] have argued that FDI is the only way to
reverse the growing inequalities between the world’s least developed countries and the rest
of the global economy. Where FDI differs from passive investment and foreign aid, is that it
also brings with it key resources that are lacking throughout the developed world, including
financial capital, the transfer of new technologies, and the organisational, managerial, and
marketing skills of foreign companies [23]. Foreign direct investments can also improve the
‘home’ company’s competitive position by reducing its labour costs, transactions costs, and
the cost of inputs, which is why it has become the favoured policy instrument of the WTO and
many developed economies [22]. Foreign direct investment has had some dramatic successes,
for example, China’s rapid development heavily relied on FDI, which allowed the Chinese
government to restructure and diversify its economy, making it more competitive in global
markets [24].

Here, we are particularly interested in FDI for its ability to promote growth in exports
from developing countries. We know from empirical studies, that foreign owned companies
(acquired through FDI) tend to export far more than their domestic counterparts [23], and
it is thought that these companies tend to have greater knowledge of global markets and so
naturally have a comparative advantage in international trade. These advantages are then
thought to ‘spillover’ into the host country and improve the ability and propensity of domestic
companies to also export [23]. To encourage FDI several policy instruments are available,
such as targeted subsidies, the establishment of so-called ‘special economic zones’ in the host
country (i.e., an area in which trade laws may differ from the rest of the country), and in
developing bilateral/regional trade deals [22]. The latter of these policy instruments has been
used to some success, most notably with the creation of the European Economic Community
(EEC, now the European Union), but also with NAFTA (the North American Free Trade
Agreement), ASEAN (Association of Southeast Asian Nations), APEC (Asia-Pacific Economic
Cooperation), and through OECD (Organisation for Economic Co-operation and Development)
negotiations. These initiatives work in two ways, first by removing internal barriers to trade, and
second, in that they provide the security of future market access that international companies
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value [22]. Trade deals have shown to have a positive impact on FDI flows. For example, the
European Union has stimulated substantial investment, between countries in the Union and
from countries outside the single market [79]. However, concerns have been raised that these
initiatives were not open to many of the world’s least-developed countries, thereby, only added
to the growing inequalities these countries face [24, 23]. If these policy instruments were to be
used to promote global network growth in commodity markets, these failings would need to be
addressed.

7.4.1 Application of Thesis Results

Having outlined the policy space on promoting growth in international commodity markets,
we now turn to consider the implications of our network modelling on these policy decisions.
The network model we developed in Chapter IV shows that growth is primarily constrained
due to issues with market access, so if our aim is to improve growth, we should choose those
FDI development policies that are most likely to address this specific issue. As noted above,
many existing FDI initiatives are not open to those least-developed countries that would benefit
the most. However, we should also be aware that faster growing networks could result in far
different topologies (i.e., moving towards the scale-free structure of the B-A model) than what
we find in existing empirical networks, and this could have both costs and benefits in other
policy areas. For example, our work in Chapter V showed that while current network structures
allow for relatively equitable price formation (measured by the Gini coefficient), small changes
to the growth model leads to significant increases in price inequality. In addition, if we consider
the implications of our work in Chapter VI, similar changes to topology would lead to an overall
increase in network connectivity. This is important, as it would allow for more diversification
of supply, and a likely reduction in the risk posed by export restrictions to importers across
many commodity markets. However, these benefits are unlikely to be shared equally, as a move
towards a scale-free network structure results in highly heterogeneous degree distributions.
Another dimension to consider, is that the least-developed countries tend to trade in only a
handful of commodities internationally: as such, improving in-market diversification (i.e.,
increasing the number of suppliers of a given commodity) would benefit those countries more
than between-market diversification, which does more to benefit the multi-national companies
based in the developed world. Taken together, these results show that any policy that aims
to improve market growth will always be a trade-off between price equality, supply risk, and
economic development.
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Addendum to Chapter IV

A.1 Comtrade data to Network Function

Listing A.1 Convert comtrade data to network function
1 function [ A, B ] = csv_to_value_matrix(data,index)
2 % convert UN Comtrade commodity data (.csv format) to adjacency matrix
3
4 % INPUT:
5 % data − UN comtrade commodity data: import raw .csv as a table <−−

important!
6 % index − list of UN country codes (i.e., 156 = China...)
7
8 % OUTPUT:
9 % A − weighted adjacency matrix of trade (measured in US$)

10 % B − adjacency matrix of trade
11
12 min_year = min(data.Year); % find start year
13 max_year = max(data.Year); % find end year
14 A = zeros(length(index), length(index), numel(unique(data.Year)));
15 B = zeros(length(index), length(index), numel(unique(data.Year)));
16
17 for i = 1:numel(unique(data.Year))
18 y = data.Year==(min_year−1)+i; % filter data by

year
19 % Use the ismember function to get the mapping between vertex ids and
20 % their consecutive index mappings:
21 [~,from] = ismember(data.ReporterCode(y), index); % exporter index
22 [~,to] = ismember(data.PartnerCode(y), index); % impoerter index
23 Adj = zeros(length(index), length(index));
24 % Use sub2ind to populate adjacency matrix:
25 linear_ind = sub2ind(size(Adj), from, to);
26 Adj(linear_ind) = data.Value(y); % add value of

trade
27 A(:,:,i) = Adj;
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28 B(:,:,i) = Adj > 0;
29 end
30 end

A.2 Trade network growth algorithm

Listing A.2 Trade network growth algorithm
1 %% Trade network growth algorithm
2 % model parameters
3 time = 1000; % number of time periods
4 lambda = 0.1; % vertex attachment probability
5 ini_pref = 0.1; % initial preference, must be > 0
6
7 % inistialise graph
8 u = 1; % number of nodes
9 G = zeros(time,time); % create seed network

10 sumedges = sum(sum(G)); % starting edges
11 G(1,1,:) = 1;
12
13 % start time
14 t = 0;
15 while t < time
16 % add 1 to timer
17 t = t + 1;
18 %_____EXTRINSIC GROWTH_____%
19 if rand <= lambda
20 % add node to U
21 u = u + 1;
22 % select node u in U
23 node_u = u;
24 for i = 1:5
25 % attach edge via pref attachment
26 node_y = pref_attach( G, node_u, ini_pref);
27 % add edge from node_v to node_u
28 G(node_y,node_u) = 1;
29 % add 1 to edge count
30 sumedges = sumedges + 1;
31 end
32 else
33 %_____INTRINSIC GROWTH_____%
34 % attach edge via uniform attachment
35 node_a = ceil(rand * u);
36 % attach edge via pref attachment
37 node_b = pref_attach( G, node_a, ini_pref);
38 % add edge from node_v to node_u
39 G(node_b,node_a) = 1;
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40 % add 1 to edge count
41 sumedges = sumedges + 1;
42 end
43 end

Listing A.3 Preferential attachment function
1 function [ node_v ] = pref_attach( G, node_u, ini_pref)
2
3 % INPUT:
4 % G − adjacency matrix
5 % node_n − source node
6 % ini_pref − initial preference, must be > 0 (hidden model parameter)
7
8 % OUTPUT:
9 % node_m − target node

10
11 % find k in G
12 degree = sum(G(1:node_u,1:node_u),2);
13 if sum(degree) < size(degree,1)
14 % check if connected
15 check_link = false;
16 while ~check_link
17 % pick node_v via pref attachment
18 node = RouletteWheelSelection(degree+ini_pref);
19 % check if connected
20 check_link = (G(node,node_u) == 0);
21 end
22 node_v = node;
23 else
24 % if all are connected
25 node_v = RouletteWheelSelection(degree+ini_pref);
26 end
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Fig. A.1 Empirical degree distributions (exports) for selected markets. Power-law fit on log-log
axis. Data source: [141].
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Fig. A.2 Empirical degree distributions (imports) for selected markets. Power-law fit on log-log
axis. Data source: [141].
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Addendum to Chapter V

B.1 The Graphical Exchange Model

Listing B.1 Graphical Exchange Model
1 %% Graphical Exchange Model
2
3 % Create random graph
4 G = rand(10,10);
5 G(G < 0.5) = 1;
6 G(G < 1) = 0;
7
8 p(1:size(G,1)) = 1/max(sum(G,1)); % price(i) = 1 / max−degree(i)
9

10 fill = zeros(size(G,1),size(G,1)); % create empty fill matrix
11
12 G = [fill G; % make G into bipartite network
13 fill fill;];
14
15 n = size(G,1)/2; % number of (n) sellers
16 m = n; % equal number of buyers and sellers
17
18 % Add sink and source nodes
19
20 [F,s,t] = sink_and_source(G,n,m);
21
22 % add source and sink nodes to graph G, such that F =
23
24 %%%%%%%%%%%%%
25 % [G %
26 % s %
27 % t]; %
28 %%%%%%%%%%%%%
29
30 % s = source node
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31 % t = sink node
32
33 % Set initial prices
34
35 % prices (p) are first set to 1/max(k) for each (n) seller
36
37 p = round(p/0.01)*0.01;
38 F(s,1:n) = F(s,1:n) .* p; % add prices to source nodes
39
40 %% Primal−Dual Algorithm
41
42 % Primal: For a given set of prices (p), calc max−flow acorss the graph
43
44 % Dual: Increase prices untill market reaches equilibrium
45
46 %tic; % timer
47 %tight_prices = primal_dual( F, p );
48 %toc
49
50
51 t = size(F,1); % t = sink node
52 s = (size(F,1))−1; % s = source node
53 n = (size(F,1)−2)/2; % number of (n) sellers
54 tight_prices = zeros(1,n); % pre−allocate tight_prices
55 %price_index = 1:n; % index for keeping track of

prices
56 Matrix = sparse(F);
57 %tight = min(tight_prices) > 0;
58
59 while sum(Matrix(1)) == 0
60
61 tic; % timer
62 warning('off','bioinfo:graphmaxflow:mincutsLimit')
63 [~, ~, Cut] = graphmaxflow(Matrix, s, t);
64 toc
65
66 min_cut = find(Cut(1,:) > 0); % find min−cut
67 min_cut = min_cut(min_cut~=s); % remove source node
68 min_cut = min_cut(min_cut<=n); % remove source node
69 cut_size = size(min_cut,2);
70
71 Matrix(min_cut,:) = []; % seller links
72 Matrix(min_cut+(n−cut_size),:) = []; % seller links
73 Matrix(:,min_cut) = []; % buyer links
74 Matrix(:,min_cut+(n−cut_size)) = []; % buyer links
75 tight_prices(min_cut) = max(p);
76 p(min_cut) = [];
77 p = p + 0.01; % increase prices of active sellers
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78 p = round(p*100000)/100000;
79 s = (size(Matrix,1))−1;
80 Matrix(s,1:size(p,2)) = p; % update flow matrix
81 n = (size(Matrix,1)−2)/2; % number of (n) sellers
82 t = size(Matrix,1);
83 s = (size(Matrix,1))−1;
84 %tight = min(tight_prices) > 0;
85
86 end
87
88 disp(tight_prices) % print prices at equilibrium
89
90 %% Re−create flow matrix at equilibrium
91
92 t = size(F,1); % t = sink node
93 s = (size(F,1))−1; % s = source node
94 n = (size(F,1)−2)/2; % number of (n) sellers
95 F(s,1:n) = tight_prices;
96
97 [~, FlowMatrix] = graphmaxflow(sparse(F), s, t);
98
99 F_flow = full(FlowMatrix);

100 F_flow = round(F_flow*100000)/100000; % 1 does not equal 1.000
101
102 view(biograph(F,[],'ShowWeights','on')) % graph visualisation (optional)

Listing B.2 Add sink and source function
1 function [ F, s, t ] = sink_and_source( A, n, m )
2
3 % modified from: http://www.mathworks.com/matlabcentral/fileexchange

/46227−seam−carvin
4 % g−with−dijkstra−and−dynamic−programming/content/AddSrcAndSink2Graph.m
5
6 start_nodes = 1:n; % first col of sellers
7 end_nodes = n+1:n+m; % last col of buyers
8
9 [ii,jj,s] = find(A); % disect current graph

10 [mG,nG] = size(A); % find hight and width of A
11
12 %adding source node
13 ii_src = (n+m+1)*ones(m, 1); % s −> first col
14 jj_src = start_nodes';
15 s_src = ones(m,1); %equal oppurtunity for entire row
16
17 %adding sink node
18 ii_trg = end_nodes';
19 jj_trg = (n+m+2)*ones(m, 1); % last col −> t
20 s_trg = ones(m,1); %equal oppurtunity for entire row
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21
22 %resemble Graph with source and sink
23 F = sparse([ii;ii_src;ii_trg], ...
24 [jj;jj_src;jj_trg], [s;s_src;s_trg], mG+2, nG+2);
25
26 F = full(F); % creates the flow graph F
27
28 s = size(F,1)−1; % s = source node
29 t = size(F,1); % t = sink node
30
31 end

Listing B.3 Find tight set function
1
2 function [ tight_index ] = find_tight( F, n , size_G, s, t)
3
4 % find tight sets in flow matrix −
5
6 % INPUT:
7 % F_flow − adjacency matrix of (n*m) graph G
8 % n − (1*n) price vector
9 % size_G = size of graph

10
11 %% For sellers
12 money_sellers(1:n) = 0;
13
14 for i = 1:n
15 money_sellers(i) = F(s,i);
16 end
17
18 money_sellers = round(money_sellers*100000)/100000; % 1 does not equal

1.000
19
20 % money_N(j) = sum(e_i) for all (i) in N(j) = total endowment in N(j)
21
22 money_sellers_N(1:n) = 0;
23
24 for i = 1:n
25 N = find(F(i,1:size_G) > 0);
26 money_sellers_N(i) = sum(F(N,t));
27 end
28
29 %% For buyers
30 money_buyers(1:n) = 0;
31
32 for i = 1:n
33 money_buyers(i) = F(i+n,t);
34 end
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35
36 money_buyers = round(money_buyers*100000)/100000; % 1 does not equal

1.000
37
38 % money_N(j) = sum(e_i) for all (i) in N(j) = total endowment in N(j)
39 money_buyers_N(1:n) = 0;
40
41 for i = 1:n
42 N = find(F(1:size_G,i+n) > 0);
43 money_buyers_N(i) = sum(F(s,N));
44 end
45
46 %% sets
47 tight(1:n+n) = 0; % denotes where j and N(j) is tight
48
49 for i = 1:n
50 if money_sellers(i) == money_sellers_N(i) || money_sellers(i) == 0 &&

money_sellers_N(i) == 0
51 tight(i) = 1;
52 tight(find(F(i,1:size_G) > 0)) = 1;
53 end
54 end
55
56 for i = 1:n
57 if money_buyers(i) == money_buyers_N(i) || money_buyers(i) == 0 &&

money_buyers_N(i) == 0
58 tight(i+n) = 1;
59 tight(find(F(1:size_G,i+n) > 0)) = 1;
60 end
61 end
62
63 tight_index = find(tight > 0); % find index of tight sellers
64
65 end
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Addendum to Chapter VI

C.1 List of Export Restrictions in the Maize Market (2006–
2012)

Table C.1 Export Restrictions in the Maize Market (2006–2012)

Country Start Date End Date Measure Type Reference

Ethiopia 01/01/2007 01/07/2010 Export Ban [28]
Argentina 01/11/2007 Export Tax [38]
Argentina 01/12/2007 01/05/2008 Export Restriction [38]
China 01/01/2008 01/11/2008 Export Tax / Quota [125]
Ethiopia 01/02/2008 Export Ban [125]
Tanzania 01/02/2008 Export Ban [125]
Niger 01/03/2008 Export Ban [125]
Argentina 01/04/2008 Export Tax [125]
Bolivia 01/04/2008 Export Ban [125]
Argentina 01/06/2008 01/09/2008 Export Quota [125]
China 01/11/2008 Export Tax / Quota [125]
Bolivia 24/02/2010 06/05/2010 Export Restriction [149]
Russian Federation 15/07/2010 31/12/2010 Export Ban [28]
Ukraine 04/10/2010 05/05/2011 Export Restriction [28]
Russian Federation 02/01/2011 30/06/2011 Export Ban [28]
Belarus 12/06/2011 Export Ban [28]
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C.2 List of Export Restrictions in the Wheat Market (2006–
2012)

Table C.2 Export Restrictions in the Wheat Market (2006–2012)

Country Start Date End Date Measure Type Reference

Ukraine 01/10/2006 01/04/2007 Export Restriction [38]
Ethiopia 01/01/2007 01/07/2010 Export Ban [28]
Argentina 01/03/2007 01/11/2007 Export Restriction [38]
Ukraine 01/06/2007 01/06/2008 Export Ban [125]
India 01/10/2007 09/09/2011 Export Restriction [28]
Argentina 01/12/2007 01/05/2008 Export Restriction [38]
China 01/01/2008 01/11/2008 Export Tax / Quota [125]
Ethiopia 01/02/2008 Export Ban [125]
Russian Federation 01/02/2008 Export Tax [125]
Tanzania 01/02/2008 Export Ban [125]
Kazakhstan 01/03/2008 Export Tax [38]
Niger 01/03/2008 Export Ban [38]
Pakistan 31/03/2008 01/10/2009 Export Tax [125]
India 03/07/2009 31/03/2013 Export Restriction [149]
Pakistan 08/02/2010 Export Restriction [149]
Argentina 01/05/2010 01/01/2011 Export Quota [125]
Pakistan 30/06/2010 13/12/2010 Export Ban [28]
Russian Federation 15/07/2010 31/12/2010 Export Ban [28]
Ukraine 04/10/2010 05/05/2011 Export Restriction [28]
Ukraine 28/12/2010 30/06/2011 Export Restriction [149]
Russian Federation 02/01/2011 30/06/2011 Export Ban [28]
Moldova 03/02/2011 04/05/2011 Export Ban [28]
Serbia 16/03/2011 16/06/2011 Export Restriction [149]
Macedonia 08/04/2011 15/09/2011 Export Restriction [149]
Belarus 12/06/2011 Export Ban [28]
India 09/09/2011 Export Restriction [149]
Ukraine 19/10/2011 04/10/2011 Export Restriction [149]
India 23/02/2012 Export Restriction [149]
Iran 01/11/2012 Export Restriction [149]
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C.3 List of Export Restrictions in the Rice Market (2006–
2012)

Table C.3 Export Restrictions in the Rice Market (2006–2012)

Country Start Date End Date Measure Type Reference

Argentina 01/04/2008 Export Ban [125]
Bangladesh 01/05/2008 07/11/2008 Export Ban [125]
Belarus 12/06/2011 Export Ban [28]
Bolivia 01/04/2008 Export Ban [125]
Bolivia 14/03/2012 Export Restriction [149]
Cambodia 01/04/2008 01/06/2008 Export Ban [125]
China 01/01/2008 01/11/2008 Export Tax / Quota [125]
Egypt 19/01/2008 12/02/2008 Export Ban [127]
Egypt 01/04/2008 01/10/2012 Export Ban [127]
Ethiopia 01/01/2007 01/07/2010 Export Ban [28]
India 31/10/2007 Export Tax [125]
India 01/12/2007 Export Tax [125]
India 27/03/2008 Export Tax [125]
India 03/06/2010 09/09/2011 Export Restriction [149]
India 21/02/2012 04/07/2012 Export Restriction [149]
India 10/05/2012 Export Restriction [149]
Indonesia 11/04/2008 Export Restriction [125]
Madagascar 01/05/2008 Export Ban [125]
Nepal 31/03/2008 01/11/2008 Export Ban [125]
Niger 01/03/2008 Export Ban [125]
Pakistan 30/04/2008 01/10/2008 Export Restriction [127]
Tanzania 01/02/2008 Export Ban [125]
Thailand 01/05/2008 Export Ban [125]
Vietnam 21/07/2007 Export Ban [127]
Vietnam 18/01/2008 Export Tax [127]
Vietnam 05/02/2008 18/06/2008 Export Ban [127]
Vietnam 18/06/2008 Export Restriction [127]
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C.4 Convert Comtrade Data to Weighted Network Function

Listing C.1 Convert comtrade data to weighted network function
1 function [ A, B ] = csv_to_weight_matrix(data,index)
2 % convert UN Comtrade commodity data (.csv format) to matrix
3
4 % INPUT:
5 % data − UN comtrade data: import .csv as a table <−− important!
6 % index − list of UN country codes selected (i.e., 156 = China...)
7
8 % OUTPUT:
9 % A − weighted adjacency matrix of trade (measured in kg)

10 % B − adjacency matrix of trade
11
12 min_year = min(data.Year); % find start year
13 max_year = max(data.Year); % find end year
14 A = zeros(length(index), length(index), numel(unique(data.Year)));
15 B = zeros(length(index), length(index), numel(unique(data.Year)));
16
17 for i = 1:numel(unique(data.Year))
18 y = data.Year==(min_year−1)+i; % filter data by

year
19 % Use the ismember function to get the mapping between vertex ids and
20 % their consecutive index mappings:
21 [~,from] = ismember(data.ReporterCode(y), index); % exporter index
22 [~,to] = ismember(data.PartnerCode(y), index); % impoerter index
23 Adj = zeros(length(index), length(index));
24 % Use sub2ind to populate adjacency matrix:
25 linear_ind = sub2ind(size(Adj), from, to);
26 data.Netweightkg(isnan(data.Netweightkg)) = 0 ; % clear NaNs
27 Adj(linear_ind) = data.Netweightkg(y); % add value

of trade
28 A(:,:,i) = Adj;
29 B(:,:,i) = Adj > 0;
30 end
31
32 end
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